Zero-free regions for Dirichlet series
In this paper, we are interested in explicit zero-free discs for some Dirichlet series and we also study a general Beurling-Nyman criterion for LL-functions. Our results generalize and improve previous results obtained by N. Nikolski and by A. de Roton. As a concrete application, we get, for example...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2013-06, Vol.365 (6), p.3227-3253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3253 |
---|---|
container_issue | 6 |
container_start_page | 3227 |
container_title | Transactions of the American Mathematical Society |
container_volume | 365 |
creator | Delaunay, C. Fricain, E. Mosaki, E. Robert, O. |
description | In this paper, we are interested in explicit zero-free discs for some Dirichlet series and we also study a general Beurling-Nyman criterion for LL-functions. Our results generalize and improve previous results obtained by N. Nikolski and by A. de Roton. As a concrete application, we get, for example, a Beurling-Nyman type criterion for the Siegel zero problem. |
doi_str_mv | 10.1090/S0002-9947-2012-05735-7 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00552945v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23513539</jstor_id><sourcerecordid>23513539</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-e4d203409a38d55dd7da0150cc87635b9cd5f064050a113a14db80df9bee50d03</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKs_QdyT4CE6-ZhNciy1WqHgQb14Cekma7dsjSRF8N-725U9expm3g-Yh5ArBrcMDNy9AACnxkhFOTBOAZVAqo7IhIHWtNQIx2Qymk7JWc7bbgWpywm5fg8p0jqFUKTw0cTPXNQxFfdNaqpNG_ZFDqkJ-Zyc1K7N4eJvTsnbw-J1vqSr58en-WxFnQTc0yA9ByHBOKE9ovfKO2AIVaVVKXBtKo81lJ0XHGPCMenXGnxt1iEgeBBTcjP0blxrv1Kzc-nHRtfY5Wxl-xsAIjcSv1nnVYO3SjHnFOoxwMD2aOwBje2_tj0ae0BjVZe8HJLbvI9pjHGBTKAwnc4H3e3yv0t_AQFGbNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Zero-free regions for Dirichlet series</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><creator>Delaunay, C. ; Fricain, E. ; Mosaki, E. ; Robert, O.</creator><creatorcontrib>Delaunay, C. ; Fricain, E. ; Mosaki, E. ; Robert, O.</creatorcontrib><description>In this paper, we are interested in explicit zero-free discs for some Dirichlet series and we also study a general Beurling-Nyman criterion for LL-functions. Our results generalize and improve previous results obtained by N. Nikolski and by A. de Roton. As a concrete application, we get, for example, a Beurling-Nyman type criterion for the Siegel zero problem.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/S0002-9947-2012-05735-7</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Functional Analysis ; Mathematics ; Number Theory ; Research article</subject><ispartof>Transactions of the American Mathematical Society, 2013-06, Vol.365 (6), p.3227-3253</ispartof><rights>Copyright 2012 American Mathematical Society; reverts to public domain 28 years from publication</rights><rights>2013 American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-e4d203409a38d55dd7da0150cc87635b9cd5f064050a113a14db80df9bee50d03</citedby><cites>FETCH-LOGICAL-a405t-e4d203409a38d55dd7da0150cc87635b9cd5f064050a113a14db80df9bee50d03</cites><orcidid>0000-0002-9929-7419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2013-365-06/S0002-9947-2012-05735-7/S0002-9947-2012-05735-7.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2013-365-06/S0002-9947-2012-05735-7/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,776,780,799,828,881,23304,23308,27903,27904,57995,57999,58228,58232,77582,77584,77592,77594</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00552945$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delaunay, C.</creatorcontrib><creatorcontrib>Fricain, E.</creatorcontrib><creatorcontrib>Mosaki, E.</creatorcontrib><creatorcontrib>Robert, O.</creatorcontrib><title>Zero-free regions for Dirichlet series</title><title>Transactions of the American Mathematical Society</title><addtitle>Trans. Amer. Math. Soc</addtitle><description>In this paper, we are interested in explicit zero-free discs for some Dirichlet series and we also study a general Beurling-Nyman criterion for LL-functions. Our results generalize and improve previous results obtained by N. Nikolski and by A. de Roton. As a concrete application, we get, for example, a Beurling-Nyman type criterion for the Siegel zero problem.</description><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Number Theory</subject><subject>Research article</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKs_QdyT4CE6-ZhNciy1WqHgQb14Cekma7dsjSRF8N-725U9expm3g-Yh5ArBrcMDNy9AACnxkhFOTBOAZVAqo7IhIHWtNQIx2Qymk7JWc7bbgWpywm5fg8p0jqFUKTw0cTPXNQxFfdNaqpNG_ZFDqkJ-Zyc1K7N4eJvTsnbw-J1vqSr58en-WxFnQTc0yA9ByHBOKE9ovfKO2AIVaVVKXBtKo81lJ0XHGPCMenXGnxt1iEgeBBTcjP0blxrv1Kzc-nHRtfY5Wxl-xsAIjcSv1nnVYO3SjHnFOoxwMD2aOwBje2_tj0ae0BjVZe8HJLbvI9pjHGBTKAwnc4H3e3yv0t_AQFGbNw</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Delaunay, C.</creator><creator>Fricain, E.</creator><creator>Mosaki, E.</creator><creator>Robert, O.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9929-7419</orcidid></search><sort><creationdate>20130601</creationdate><title>Zero-free regions for Dirichlet series</title><author>Delaunay, C. ; Fricain, E. ; Mosaki, E. ; Robert, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-e4d203409a38d55dd7da0150cc87635b9cd5f064050a113a14db80df9bee50d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Number Theory</topic><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delaunay, C.</creatorcontrib><creatorcontrib>Fricain, E.</creatorcontrib><creatorcontrib>Mosaki, E.</creatorcontrib><creatorcontrib>Robert, O.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delaunay, C.</au><au>Fricain, E.</au><au>Mosaki, E.</au><au>Robert, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-free regions for Dirichlet series</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><stitle>Trans. Amer. Math. Soc</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>365</volume><issue>6</issue><spage>3227</spage><epage>3253</epage><pages>3227-3253</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>In this paper, we are interested in explicit zero-free discs for some Dirichlet series and we also study a general Beurling-Nyman criterion for LL-functions. Our results generalize and improve previous results obtained by N. Nikolski and by A. de Roton. As a concrete application, we get, for example, a Beurling-Nyman type criterion for the Siegel zero problem.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9947-2012-05735-7</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-9929-7419</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2013-06, Vol.365 (6), p.3227-3253 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00552945v1 |
source | American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications |
subjects | Functional Analysis Mathematics Number Theory Research article |
title | Zero-free regions for Dirichlet series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-free%20regions%20for%20Dirichlet%20series&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Delaunay,%20C.&rft.date=2013-06-01&rft.volume=365&rft.issue=6&rft.spage=3227&rft.epage=3253&rft.pages=3227-3253&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/S0002-9947-2012-05735-7&rft_dat=%3Cjstor_hal_p%3E23513539%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23513539&rfr_iscdi=true |