Multimodel climate and variability of the stratosphere

The stratospheric climate and variability from simulations of sixteen chemistry‐climate models is evaluated. On average the polar night jet is well reproduced though its variability is less well reproduced with a large spread between models. Polar temperature biases are less than 5 K except in the S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2011, Vol.116 (D5), p.1V-n/a, Article D05102
Hauptverfasser: Butchart, N., Charlton-Perez, A. J., Cionni, I., Hardiman, S. C., Haynes, P. H., Krüger, K., Kushner, P. J., Newman, P. A., Osprey, S. M., Perlwitz, J., Sigmond, M., Wang, L., Akiyoshi, H., Austin, J., Bekki, S., Baumgaertner, A., Braesicke, P., Brühl, C., Chipperfield, M., Dameris, M., Dhomse, S., Eyring, V., Garcia, R., Garny, H., Jöckel, P., Lamarque, J.-F., Marchand, M., Michou, M., Morgenstern, O., Nakamura, T., Pawson, S., Plummer, D., Pyle, J., Rozanov, E., Scinocca, J., Shepherd, T. G., Shibata, K., Smale, D., Teyssèdre, H., Tian, W., Waugh, D., Yamashita, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D5
container_start_page 1V
container_title Journal of Geophysical Research
container_volume 116
creator Butchart, N.
Charlton-Perez, A. J.
Cionni, I.
Hardiman, S. C.
Haynes, P. H.
Krüger, K.
Kushner, P. J.
Newman, P. A.
Osprey, S. M.
Perlwitz, J.
Sigmond, M.
Wang, L.
Akiyoshi, H.
Austin, J.
Bekki, S.
Baumgaertner, A.
Braesicke, P.
Brühl, C.
Chipperfield, M.
Dameris, M.
Dhomse, S.
Eyring, V.
Garcia, R.
Garny, H.
Jöckel, P.
Lamarque, J.-F.
Marchand, M.
Michou, M.
Morgenstern, O.
Nakamura, T.
Pawson, S.
Plummer, D.
Pyle, J.
Rozanov, E.
Scinocca, J.
Shepherd, T. G.
Shibata, K.
Smale, D.
Teyssèdre, H.
Tian, W.
Waugh, D.
Yamashita, Y.
description The stratospheric climate and variability from simulations of sixteen chemistry‐climate models is evaluated. On average the polar night jet is well reproduced though its variability is less well reproduced with a large spread between models. Polar temperature biases are less than 5 K except in the Southern Hemisphere (SH) lower stratosphere in spring. The accumulated area of low temperatures responsible for polar stratospheric cloud formation is accurately reproduced for the Antarctic but underestimated for the Arctic. The shape and position of the polar vortex is well simulated, as is the tropical upwelling in the lower stratosphere. There is a wide model spread in the frequency of major sudden stratospheric warnings (SSWs), late biases in the breakup of the SH vortex, and a weak annual cycle in the zonal wind in the tropical upper stratosphere. Quantitatively, “metrics” indicate a wide spread in model performance for most diagnostics with systematic biases in many, and poorer performance in the SH than in the Northern Hemisphere (NH). Correlations were found in the SH between errors in the final warming, polar temperatures, the leading mode of variability, and jet strength, and in the NH between errors in polar temperatures, frequency of major SSWs, and jet strength. Models with a stronger QBO have stronger tropical upwelling and a colder NH vortex. Both the qualitative and quantitative analysis indicate a number of common and long‐standing model problems, particularly related to the simulation of the SH and stratospheric variability.
doi_str_mv 10.1029/2010JD014995
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00550792v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3498296141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4170-637cbaf5d0efe581a0ecc4a2b736612e2e089f87c680f97cbfcdcbb2d2562ca63</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOObe_AEFnwSrN2mTtI9j081RFdxk4EtI04R1dutMuun-vRmV4ZP35cLhO4fDQegSwy0Gkt4RwDAZAo7TlJ6gDsGUhYQAOUUdLyYhEMLPUc-5JfiLKYsBdxB72lZNuaoLXQWqKley0YFcF8FO2lLmZVU2-6A2QbPQgWusbGq3WWirL9CZkZXTvd_fRW8P97PBOMxeRo-DfhaqGHMIWcRVLg0tQBtNEyxBKxVLkvOIMUw00ZCkJuGKJWBSzxpVqDwnBaGMKMmiLrpucxeyEhvr-9m9qGUpxv1MHDQASoGnZIc9e9WyG1t_brVrxLLe2rWvJzAjNEqjGLinblpK2do5q80xFoM4DCn-DunxqMW_ykrv_2XFZPQ6xCyJwbvC1lW6Rn8fXdJ-CMYjTsX8eSQG0_n7bJpNBY1-ACDQgfY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625393407</pqid></control><display><type>article</type><title>Multimodel climate and variability of the stratosphere</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Butchart, N. ; Charlton-Perez, A. J. ; Cionni, I. ; Hardiman, S. C. ; Haynes, P. H. ; Krüger, K. ; Kushner, P. J. ; Newman, P. A. ; Osprey, S. M. ; Perlwitz, J. ; Sigmond, M. ; Wang, L. ; Akiyoshi, H. ; Austin, J. ; Bekki, S. ; Baumgaertner, A. ; Braesicke, P. ; Brühl, C. ; Chipperfield, M. ; Dameris, M. ; Dhomse, S. ; Eyring, V. ; Garcia, R. ; Garny, H. ; Jöckel, P. ; Lamarque, J.-F. ; Marchand, M. ; Michou, M. ; Morgenstern, O. ; Nakamura, T. ; Pawson, S. ; Plummer, D. ; Pyle, J. ; Rozanov, E. ; Scinocca, J. ; Shepherd, T. G. ; Shibata, K. ; Smale, D. ; Teyssèdre, H. ; Tian, W. ; Waugh, D. ; Yamashita, Y.</creator><creatorcontrib>Butchart, N. ; Charlton-Perez, A. J. ; Cionni, I. ; Hardiman, S. C. ; Haynes, P. H. ; Krüger, K. ; Kushner, P. J. ; Newman, P. A. ; Osprey, S. M. ; Perlwitz, J. ; Sigmond, M. ; Wang, L. ; Akiyoshi, H. ; Austin, J. ; Bekki, S. ; Baumgaertner, A. ; Braesicke, P. ; Brühl, C. ; Chipperfield, M. ; Dameris, M. ; Dhomse, S. ; Eyring, V. ; Garcia, R. ; Garny, H. ; Jöckel, P. ; Lamarque, J.-F. ; Marchand, M. ; Michou, M. ; Morgenstern, O. ; Nakamura, T. ; Pawson, S. ; Plummer, D. ; Pyle, J. ; Rozanov, E. ; Scinocca, J. ; Shepherd, T. G. ; Shibata, K. ; Smale, D. ; Teyssèdre, H. ; Tian, W. ; Waugh, D. ; Yamashita, Y.</creatorcontrib><description>The stratospheric climate and variability from simulations of sixteen chemistry‐climate models is evaluated. On average the polar night jet is well reproduced though its variability is less well reproduced with a large spread between models. Polar temperature biases are less than 5 K except in the Southern Hemisphere (SH) lower stratosphere in spring. The accumulated area of low temperatures responsible for polar stratospheric cloud formation is accurately reproduced for the Antarctic but underestimated for the Arctic. The shape and position of the polar vortex is well simulated, as is the tropical upwelling in the lower stratosphere. There is a wide model spread in the frequency of major sudden stratospheric warnings (SSWs), late biases in the breakup of the SH vortex, and a weak annual cycle in the zonal wind in the tropical upper stratosphere. Quantitatively, “metrics” indicate a wide spread in model performance for most diagnostics with systematic biases in many, and poorer performance in the SH than in the Northern Hemisphere (NH). Correlations were found in the SH between errors in the final warming, polar temperatures, the leading mode of variability, and jet strength, and in the NH between errors in polar temperatures, frequency of major SSWs, and jet strength. Models with a stronger QBO have stronger tropical upwelling and a colder NH vortex. Both the qualitative and quantitative analysis indicate a number of common and long‐standing model problems, particularly related to the simulation of the SH and stratospheric variability.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2010JD014995</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmospheric and Oceanic Physics ; Climate models ; Climatology ; Earth Sciences ; general circulation model ; Geophysics ; Low temperature ; Physics ; Sciences of the Universe ; Stratosphere ; stratospheric climate ; Upwelling</subject><ispartof>Journal of Geophysical Research, 2011, Vol.116 (D5), p.1V-n/a, Article D05102</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright Blackwell Publishing Ltd. 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4170-637cbaf5d0efe581a0ecc4a2b736612e2e089f87c680f97cbfcdcbb2d2562ca63</citedby><cites>FETCH-LOGICAL-c4170-637cbaf5d0efe581a0ecc4a2b736612e2e089f87c680f97cbfcdcbb2d2562ca63</cites><orcidid>0000-0002-5538-0800 ; 0000-0003-1460-6663 ; 0000-0003-2191-9756 ; 0000-0003-2220-383X ; 0000-0002-1751-3326 ; 0000-0003-3385-0880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JD014995$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JD014995$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,4010,11493,27900,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00550792$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Butchart, N.</creatorcontrib><creatorcontrib>Charlton-Perez, A. J.</creatorcontrib><creatorcontrib>Cionni, I.</creatorcontrib><creatorcontrib>Hardiman, S. C.</creatorcontrib><creatorcontrib>Haynes, P. H.</creatorcontrib><creatorcontrib>Krüger, K.</creatorcontrib><creatorcontrib>Kushner, P. J.</creatorcontrib><creatorcontrib>Newman, P. A.</creatorcontrib><creatorcontrib>Osprey, S. M.</creatorcontrib><creatorcontrib>Perlwitz, J.</creatorcontrib><creatorcontrib>Sigmond, M.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Akiyoshi, H.</creatorcontrib><creatorcontrib>Austin, J.</creatorcontrib><creatorcontrib>Bekki, S.</creatorcontrib><creatorcontrib>Baumgaertner, A.</creatorcontrib><creatorcontrib>Braesicke, P.</creatorcontrib><creatorcontrib>Brühl, C.</creatorcontrib><creatorcontrib>Chipperfield, M.</creatorcontrib><creatorcontrib>Dameris, M.</creatorcontrib><creatorcontrib>Dhomse, S.</creatorcontrib><creatorcontrib>Eyring, V.</creatorcontrib><creatorcontrib>Garcia, R.</creatorcontrib><creatorcontrib>Garny, H.</creatorcontrib><creatorcontrib>Jöckel, P.</creatorcontrib><creatorcontrib>Lamarque, J.-F.</creatorcontrib><creatorcontrib>Marchand, M.</creatorcontrib><creatorcontrib>Michou, M.</creatorcontrib><creatorcontrib>Morgenstern, O.</creatorcontrib><creatorcontrib>Nakamura, T.</creatorcontrib><creatorcontrib>Pawson, S.</creatorcontrib><creatorcontrib>Plummer, D.</creatorcontrib><creatorcontrib>Pyle, J.</creatorcontrib><creatorcontrib>Rozanov, E.</creatorcontrib><creatorcontrib>Scinocca, J.</creatorcontrib><creatorcontrib>Shepherd, T. G.</creatorcontrib><creatorcontrib>Shibata, K.</creatorcontrib><creatorcontrib>Smale, D.</creatorcontrib><creatorcontrib>Teyssèdre, H.</creatorcontrib><creatorcontrib>Tian, W.</creatorcontrib><creatorcontrib>Waugh, D.</creatorcontrib><creatorcontrib>Yamashita, Y.</creatorcontrib><title>Multimodel climate and variability of the stratosphere</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>The stratospheric climate and variability from simulations of sixteen chemistry‐climate models is evaluated. On average the polar night jet is well reproduced though its variability is less well reproduced with a large spread between models. Polar temperature biases are less than 5 K except in the Southern Hemisphere (SH) lower stratosphere in spring. The accumulated area of low temperatures responsible for polar stratospheric cloud formation is accurately reproduced for the Antarctic but underestimated for the Arctic. The shape and position of the polar vortex is well simulated, as is the tropical upwelling in the lower stratosphere. There is a wide model spread in the frequency of major sudden stratospheric warnings (SSWs), late biases in the breakup of the SH vortex, and a weak annual cycle in the zonal wind in the tropical upper stratosphere. Quantitatively, “metrics” indicate a wide spread in model performance for most diagnostics with systematic biases in many, and poorer performance in the SH than in the Northern Hemisphere (NH). Correlations were found in the SH between errors in the final warming, polar temperatures, the leading mode of variability, and jet strength, and in the NH between errors in polar temperatures, frequency of major SSWs, and jet strength. Models with a stronger QBO have stronger tropical upwelling and a colder NH vortex. Both the qualitative and quantitative analysis indicate a number of common and long‐standing model problems, particularly related to the simulation of the SH and stratospheric variability.</description><subject>Atmospheric and Oceanic Physics</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Earth Sciences</subject><subject>general circulation model</subject><subject>Geophysics</subject><subject>Low temperature</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>Stratosphere</subject><subject>stratospheric climate</subject><subject>Upwelling</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kFFLwzAUhYMoOObe_AEFnwSrN2mTtI9j081RFdxk4EtI04R1dutMuun-vRmV4ZP35cLhO4fDQegSwy0Gkt4RwDAZAo7TlJ6gDsGUhYQAOUUdLyYhEMLPUc-5JfiLKYsBdxB72lZNuaoLXQWqKley0YFcF8FO2lLmZVU2-6A2QbPQgWusbGq3WWirL9CZkZXTvd_fRW8P97PBOMxeRo-DfhaqGHMIWcRVLg0tQBtNEyxBKxVLkvOIMUw00ZCkJuGKJWBSzxpVqDwnBaGMKMmiLrpucxeyEhvr-9m9qGUpxv1MHDQASoGnZIc9e9WyG1t_brVrxLLe2rWvJzAjNEqjGLinblpK2do5q80xFoM4DCn-DunxqMW_ykrv_2XFZPQ6xCyJwbvC1lW6Rn8fXdJ-CMYjTsX8eSQG0_n7bJpNBY1-ACDQgfY</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Butchart, N.</creator><creator>Charlton-Perez, A. J.</creator><creator>Cionni, I.</creator><creator>Hardiman, S. C.</creator><creator>Haynes, P. H.</creator><creator>Krüger, K.</creator><creator>Kushner, P. J.</creator><creator>Newman, P. A.</creator><creator>Osprey, S. M.</creator><creator>Perlwitz, J.</creator><creator>Sigmond, M.</creator><creator>Wang, L.</creator><creator>Akiyoshi, H.</creator><creator>Austin, J.</creator><creator>Bekki, S.</creator><creator>Baumgaertner, A.</creator><creator>Braesicke, P.</creator><creator>Brühl, C.</creator><creator>Chipperfield, M.</creator><creator>Dameris, M.</creator><creator>Dhomse, S.</creator><creator>Eyring, V.</creator><creator>Garcia, R.</creator><creator>Garny, H.</creator><creator>Jöckel, P.</creator><creator>Lamarque, J.-F.</creator><creator>Marchand, M.</creator><creator>Michou, M.</creator><creator>Morgenstern, O.</creator><creator>Nakamura, T.</creator><creator>Pawson, S.</creator><creator>Plummer, D.</creator><creator>Pyle, J.</creator><creator>Rozanov, E.</creator><creator>Scinocca, J.</creator><creator>Shepherd, T. G.</creator><creator>Shibata, K.</creator><creator>Smale, D.</creator><creator>Teyssèdre, H.</creator><creator>Tian, W.</creator><creator>Waugh, D.</creator><creator>Yamashita, Y.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5538-0800</orcidid><orcidid>https://orcid.org/0000-0003-1460-6663</orcidid><orcidid>https://orcid.org/0000-0003-2191-9756</orcidid><orcidid>https://orcid.org/0000-0003-2220-383X</orcidid><orcidid>https://orcid.org/0000-0002-1751-3326</orcidid><orcidid>https://orcid.org/0000-0003-3385-0880</orcidid></search><sort><creationdate>2011</creationdate><title>Multimodel climate and variability of the stratosphere</title><author>Butchart, N. ; Charlton-Perez, A. J. ; Cionni, I. ; Hardiman, S. C. ; Haynes, P. H. ; Krüger, K. ; Kushner, P. J. ; Newman, P. A. ; Osprey, S. M. ; Perlwitz, J. ; Sigmond, M. ; Wang, L. ; Akiyoshi, H. ; Austin, J. ; Bekki, S. ; Baumgaertner, A. ; Braesicke, P. ; Brühl, C. ; Chipperfield, M. ; Dameris, M. ; Dhomse, S. ; Eyring, V. ; Garcia, R. ; Garny, H. ; Jöckel, P. ; Lamarque, J.-F. ; Marchand, M. ; Michou, M. ; Morgenstern, O. ; Nakamura, T. ; Pawson, S. ; Plummer, D. ; Pyle, J. ; Rozanov, E. ; Scinocca, J. ; Shepherd, T. G. ; Shibata, K. ; Smale, D. ; Teyssèdre, H. ; Tian, W. ; Waugh, D. ; Yamashita, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4170-637cbaf5d0efe581a0ecc4a2b736612e2e089f87c680f97cbfcdcbb2d2562ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atmospheric and Oceanic Physics</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Earth Sciences</topic><topic>general circulation model</topic><topic>Geophysics</topic><topic>Low temperature</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>Stratosphere</topic><topic>stratospheric climate</topic><topic>Upwelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butchart, N.</creatorcontrib><creatorcontrib>Charlton-Perez, A. J.</creatorcontrib><creatorcontrib>Cionni, I.</creatorcontrib><creatorcontrib>Hardiman, S. C.</creatorcontrib><creatorcontrib>Haynes, P. H.</creatorcontrib><creatorcontrib>Krüger, K.</creatorcontrib><creatorcontrib>Kushner, P. J.</creatorcontrib><creatorcontrib>Newman, P. A.</creatorcontrib><creatorcontrib>Osprey, S. M.</creatorcontrib><creatorcontrib>Perlwitz, J.</creatorcontrib><creatorcontrib>Sigmond, M.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Akiyoshi, H.</creatorcontrib><creatorcontrib>Austin, J.</creatorcontrib><creatorcontrib>Bekki, S.</creatorcontrib><creatorcontrib>Baumgaertner, A.</creatorcontrib><creatorcontrib>Braesicke, P.</creatorcontrib><creatorcontrib>Brühl, C.</creatorcontrib><creatorcontrib>Chipperfield, M.</creatorcontrib><creatorcontrib>Dameris, M.</creatorcontrib><creatorcontrib>Dhomse, S.</creatorcontrib><creatorcontrib>Eyring, V.</creatorcontrib><creatorcontrib>Garcia, R.</creatorcontrib><creatorcontrib>Garny, H.</creatorcontrib><creatorcontrib>Jöckel, P.</creatorcontrib><creatorcontrib>Lamarque, J.-F.</creatorcontrib><creatorcontrib>Marchand, M.</creatorcontrib><creatorcontrib>Michou, M.</creatorcontrib><creatorcontrib>Morgenstern, O.</creatorcontrib><creatorcontrib>Nakamura, T.</creatorcontrib><creatorcontrib>Pawson, S.</creatorcontrib><creatorcontrib>Plummer, D.</creatorcontrib><creatorcontrib>Pyle, J.</creatorcontrib><creatorcontrib>Rozanov, E.</creatorcontrib><creatorcontrib>Scinocca, J.</creatorcontrib><creatorcontrib>Shepherd, T. G.</creatorcontrib><creatorcontrib>Shibata, K.</creatorcontrib><creatorcontrib>Smale, D.</creatorcontrib><creatorcontrib>Teyssèdre, H.</creatorcontrib><creatorcontrib>Tian, W.</creatorcontrib><creatorcontrib>Waugh, D.</creatorcontrib><creatorcontrib>Yamashita, Y.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butchart, N.</au><au>Charlton-Perez, A. J.</au><au>Cionni, I.</au><au>Hardiman, S. C.</au><au>Haynes, P. H.</au><au>Krüger, K.</au><au>Kushner, P. J.</au><au>Newman, P. A.</au><au>Osprey, S. M.</au><au>Perlwitz, J.</au><au>Sigmond, M.</au><au>Wang, L.</au><au>Akiyoshi, H.</au><au>Austin, J.</au><au>Bekki, S.</au><au>Baumgaertner, A.</au><au>Braesicke, P.</au><au>Brühl, C.</au><au>Chipperfield, M.</au><au>Dameris, M.</au><au>Dhomse, S.</au><au>Eyring, V.</au><au>Garcia, R.</au><au>Garny, H.</au><au>Jöckel, P.</au><au>Lamarque, J.-F.</au><au>Marchand, M.</au><au>Michou, M.</au><au>Morgenstern, O.</au><au>Nakamura, T.</au><au>Pawson, S.</au><au>Plummer, D.</au><au>Pyle, J.</au><au>Rozanov, E.</au><au>Scinocca, J.</au><au>Shepherd, T. G.</au><au>Shibata, K.</au><au>Smale, D.</au><au>Teyssèdre, H.</au><au>Tian, W.</au><au>Waugh, D.</au><au>Yamashita, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodel climate and variability of the stratosphere</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011</date><risdate>2011</risdate><volume>116</volume><issue>D5</issue><spage>1V</spage><epage>n/a</epage><pages>1V-n/a</pages><artnum>D05102</artnum><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>The stratospheric climate and variability from simulations of sixteen chemistry‐climate models is evaluated. On average the polar night jet is well reproduced though its variability is less well reproduced with a large spread between models. Polar temperature biases are less than 5 K except in the Southern Hemisphere (SH) lower stratosphere in spring. The accumulated area of low temperatures responsible for polar stratospheric cloud formation is accurately reproduced for the Antarctic but underestimated for the Arctic. The shape and position of the polar vortex is well simulated, as is the tropical upwelling in the lower stratosphere. There is a wide model spread in the frequency of major sudden stratospheric warnings (SSWs), late biases in the breakup of the SH vortex, and a weak annual cycle in the zonal wind in the tropical upper stratosphere. Quantitatively, “metrics” indicate a wide spread in model performance for most diagnostics with systematic biases in many, and poorer performance in the SH than in the Northern Hemisphere (NH). Correlations were found in the SH between errors in the final warming, polar temperatures, the leading mode of variability, and jet strength, and in the NH between errors in polar temperatures, frequency of major SSWs, and jet strength. Models with a stronger QBO have stronger tropical upwelling and a colder NH vortex. Both the qualitative and quantitative analysis indicate a number of common and long‐standing model problems, particularly related to the simulation of the SH and stratospheric variability.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JD014995</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5538-0800</orcidid><orcidid>https://orcid.org/0000-0003-1460-6663</orcidid><orcidid>https://orcid.org/0000-0003-2191-9756</orcidid><orcidid>https://orcid.org/0000-0003-2220-383X</orcidid><orcidid>https://orcid.org/0000-0002-1751-3326</orcidid><orcidid>https://orcid.org/0000-0003-3385-0880</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 2011, Vol.116 (D5), p.1V-n/a, Article D05102
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_hal_primary_oai_HAL_hal_00550792v1
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Atmospheric and Oceanic Physics
Climate models
Climatology
Earth Sciences
general circulation model
Geophysics
Low temperature
Physics
Sciences of the Universe
Stratosphere
stratospheric climate
Upwelling
title Multimodel climate and variability of the stratosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodel%20climate%20and%20variability%20of%20the%20stratosphere&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Butchart,%20N.&rft.date=2011&rft.volume=116&rft.issue=D5&rft.spage=1V&rft.epage=n/a&rft.pages=1V-n/a&rft.artnum=D05102&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JD014995&rft_dat=%3Cproquest_hal_p%3E3498296141%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625393407&rft_id=info:pmid/&rfr_iscdi=true