Parameters estimation for asymmetric bifurcating autoregressive processes with missing data

We estimate the unknown parameters of an asymmetric bifurcating autoregressive process (BAR) when some of the data are missing. In this aim, we model the observed data by a two-type Galton-Watson process consistent with the binary tree structure of the data. Under independence between the process le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of statistics 2011-01, Vol.5 (none), p.1313-1353
Hauptverfasser: de Saporta, Benoîte, Gégout-Petit, Anne, Marsalle, Laurence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1353
container_issue none
container_start_page 1313
container_title Electronic journal of statistics
container_volume 5
creator de Saporta, Benoîte
Gégout-Petit, Anne
Marsalle, Laurence
description We estimate the unknown parameters of an asymmetric bifurcating autoregressive process (BAR) when some of the data are missing. In this aim, we model the observed data by a two-type Galton-Watson process consistent with the binary tree structure of the data. Under independence between the process leading to the missing data and the BAR process and suitable assumptions on the driven noise, we establish the strong consistency of our estimators on the set of non-extinction of the Galton-Watson process, via a martingale approach. We also prove a quadratic strong law and the asymptotic normality.
doi_str_mv 10.1214/11-EJS643
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00545447v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00545447v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-9ae438ac63cc9386f28ad9942d5a05ef8b15d86d75d46a5d08894e810c534a563</originalsourceid><addsrcrecordid>eNpNUMtKAzEUDaJgrS78g2xdjCaTx2SWpVSrFBTUlYtwm0cb6XRKklb696ZU1NU9nMeFcxC6puSW1pTfUVpNnl4lZydoQFsmqkbU_PQfPkcXKX0SIlQt5QB9vECEzmUXE3Yphw5y6NfY9xFD2ndFicHgefDbaIq0XmDY5j66RXQphZ3Dm9ibAl3CXyEvcRcKXVwWMlyiMw-r5K5-7hC930_extNq9vzwOB7NKsOEyFULjjMFRjJjWqakrxXYtuW1FUCE82pOhVXSNsJyCcISpVruFCVGMA5CsiG6Of5dwkpvYukQ97qHoKejmT5wpS0XnDc7-uc1sU8pOv8boEQfFtSU6uOC7BvLZWSJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parameters estimation for asymmetric bifurcating autoregressive processes with missing data</title><source>DOAJ Directory of Open Access Journals</source><source>Project Euclid Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>de Saporta, Benoîte ; Gégout-Petit, Anne ; Marsalle, Laurence</creator><creatorcontrib>de Saporta, Benoîte ; Gégout-Petit, Anne ; Marsalle, Laurence</creatorcontrib><description>We estimate the unknown parameters of an asymmetric bifurcating autoregressive process (BAR) when some of the data are missing. In this aim, we model the observed data by a two-type Galton-Watson process consistent with the binary tree structure of the data. Under independence between the process leading to the missing data and the BAR process and suitable assumptions on the driven noise, we establish the strong consistency of our estimators on the set of non-extinction of the Galton-Watson process, via a martingale approach. We also prove a quadratic strong law and the asymptotic normality.</description><identifier>ISSN: 1935-7524</identifier><identifier>EISSN: 1935-7524</identifier><identifier>DOI: 10.1214/11-EJS643</identifier><language>eng</language><publisher>Shaker Heights, OH : Institute of Mathematical Statistics</publisher><subject>Mathematics ; Probability ; Statistics ; Statistics Theory</subject><ispartof>Electronic journal of statistics, 2011-01, Vol.5 (none), p.1313-1353</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-9ae438ac63cc9386f28ad9942d5a05ef8b15d86d75d46a5d08894e810c534a563</citedby><cites>FETCH-LOGICAL-c355t-9ae438ac63cc9386f28ad9942d5a05ef8b15d86d75d46a5d08894e810c534a563</cites><orcidid>0000-0003-2509-1431 ; 0000-0002-7176-912X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00545447$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Saporta, Benoîte</creatorcontrib><creatorcontrib>Gégout-Petit, Anne</creatorcontrib><creatorcontrib>Marsalle, Laurence</creatorcontrib><title>Parameters estimation for asymmetric bifurcating autoregressive processes with missing data</title><title>Electronic journal of statistics</title><description>We estimate the unknown parameters of an asymmetric bifurcating autoregressive process (BAR) when some of the data are missing. In this aim, we model the observed data by a two-type Galton-Watson process consistent with the binary tree structure of the data. Under independence between the process leading to the missing data and the BAR process and suitable assumptions on the driven noise, we establish the strong consistency of our estimators on the set of non-extinction of the Galton-Watson process, via a martingale approach. We also prove a quadratic strong law and the asymptotic normality.</description><subject>Mathematics</subject><subject>Probability</subject><subject>Statistics</subject><subject>Statistics Theory</subject><issn>1935-7524</issn><issn>1935-7524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNUMtKAzEUDaJgrS78g2xdjCaTx2SWpVSrFBTUlYtwm0cb6XRKklb696ZU1NU9nMeFcxC6puSW1pTfUVpNnl4lZydoQFsmqkbU_PQfPkcXKX0SIlQt5QB9vECEzmUXE3Yphw5y6NfY9xFD2ndFicHgefDbaIq0XmDY5j66RXQphZ3Dm9ibAl3CXyEvcRcKXVwWMlyiMw-r5K5-7hC930_extNq9vzwOB7NKsOEyFULjjMFRjJjWqakrxXYtuW1FUCE82pOhVXSNsJyCcISpVruFCVGMA5CsiG6Of5dwkpvYukQ97qHoKejmT5wpS0XnDc7-uc1sU8pOv8boEQfFtSU6uOC7BvLZWSJ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>de Saporta, Benoîte</creator><creator>Gégout-Petit, Anne</creator><creator>Marsalle, Laurence</creator><general>Shaker Heights, OH : Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2509-1431</orcidid><orcidid>https://orcid.org/0000-0002-7176-912X</orcidid></search><sort><creationdate>20110101</creationdate><title>Parameters estimation for asymmetric bifurcating autoregressive processes with missing data</title><author>de Saporta, Benoîte ; Gégout-Petit, Anne ; Marsalle, Laurence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-9ae438ac63cc9386f28ad9942d5a05ef8b15d86d75d46a5d08894e810c534a563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Probability</topic><topic>Statistics</topic><topic>Statistics Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Saporta, Benoîte</creatorcontrib><creatorcontrib>Gégout-Petit, Anne</creatorcontrib><creatorcontrib>Marsalle, Laurence</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Electronic journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Saporta, Benoîte</au><au>Gégout-Petit, Anne</au><au>Marsalle, Laurence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameters estimation for asymmetric bifurcating autoregressive processes with missing data</atitle><jtitle>Electronic journal of statistics</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>5</volume><issue>none</issue><spage>1313</spage><epage>1353</epage><pages>1313-1353</pages><issn>1935-7524</issn><eissn>1935-7524</eissn><abstract>We estimate the unknown parameters of an asymmetric bifurcating autoregressive process (BAR) when some of the data are missing. In this aim, we model the observed data by a two-type Galton-Watson process consistent with the binary tree structure of the data. Under independence between the process leading to the missing data and the BAR process and suitable assumptions on the driven noise, we establish the strong consistency of our estimators on the set of non-extinction of the Galton-Watson process, via a martingale approach. We also prove a quadratic strong law and the asymptotic normality.</abstract><pub>Shaker Heights, OH : Institute of Mathematical Statistics</pub><doi>10.1214/11-EJS643</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0003-2509-1431</orcidid><orcidid>https://orcid.org/0000-0002-7176-912X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-7524
ispartof Electronic journal of statistics, 2011-01, Vol.5 (none), p.1313-1353
issn 1935-7524
1935-7524
language eng
recordid cdi_hal_primary_oai_HAL_hal_00545447v1
source DOAJ Directory of Open Access Journals; Project Euclid Open Access; EZB-FREE-00999 freely available EZB journals
subjects Mathematics
Probability
Statistics
Statistics Theory
title Parameters estimation for asymmetric bifurcating autoregressive processes with missing data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameters%20estimation%20for%20asymmetric%20bifurcating%20autoregressive%20processes%20with%20missing%20data&rft.jtitle=Electronic%20journal%20of%20statistics&rft.au=de%20Saporta,%20Beno%C3%AEte&rft.date=2011-01-01&rft.volume=5&rft.issue=none&rft.spage=1313&rft.epage=1353&rft.pages=1313-1353&rft.issn=1935-7524&rft.eissn=1935-7524&rft_id=info:doi/10.1214/11-EJS643&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00545447v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true