Parameters estimation for asymmetric bifurcating autoregressive processes with missing data
We estimate the unknown parameters of an asymmetric bifurcating autoregressive process (BAR) when some of the data are missing. In this aim, we model the observed data by a two-type Galton-Watson process consistent with the binary tree structure of the data. Under independence between the process le...
Gespeichert in:
Veröffentlicht in: | Electronic journal of statistics 2011-01, Vol.5 (none), p.1313-1353 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1353 |
---|---|
container_issue | none |
container_start_page | 1313 |
container_title | Electronic journal of statistics |
container_volume | 5 |
creator | de Saporta, Benoîte Gégout-Petit, Anne Marsalle, Laurence |
description | We estimate the unknown parameters of an asymmetric bifurcating autoregressive process (BAR) when some of the data are missing. In this aim, we model the observed data by a two-type Galton-Watson process consistent with the binary tree structure of the data. Under independence between the process leading to the missing data and the BAR process and suitable assumptions on the driven noise, we establish the strong consistency of our estimators on the set of non-extinction of the Galton-Watson process, via a martingale approach. We also prove a quadratic strong law and the asymptotic normality. |
doi_str_mv | 10.1214/11-EJS643 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00545447v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00545447v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-9ae438ac63cc9386f28ad9942d5a05ef8b15d86d75d46a5d08894e810c534a563</originalsourceid><addsrcrecordid>eNpNUMtKAzEUDaJgrS78g2xdjCaTx2SWpVSrFBTUlYtwm0cb6XRKklb696ZU1NU9nMeFcxC6puSW1pTfUVpNnl4lZydoQFsmqkbU_PQfPkcXKX0SIlQt5QB9vECEzmUXE3Yphw5y6NfY9xFD2ndFicHgefDbaIq0XmDY5j66RXQphZ3Dm9ibAl3CXyEvcRcKXVwWMlyiMw-r5K5-7hC930_extNq9vzwOB7NKsOEyFULjjMFRjJjWqakrxXYtuW1FUCE82pOhVXSNsJyCcISpVruFCVGMA5CsiG6Of5dwkpvYukQ97qHoKejmT5wpS0XnDc7-uc1sU8pOv8boEQfFtSU6uOC7BvLZWSJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parameters estimation for asymmetric bifurcating autoregressive processes with missing data</title><source>DOAJ Directory of Open Access Journals</source><source>Project Euclid Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>de Saporta, Benoîte ; Gégout-Petit, Anne ; Marsalle, Laurence</creator><creatorcontrib>de Saporta, Benoîte ; Gégout-Petit, Anne ; Marsalle, Laurence</creatorcontrib><description>We estimate the unknown parameters of an asymmetric bifurcating autoregressive process (BAR) when some of the data are missing. In this aim, we model the observed data by a two-type Galton-Watson process consistent with the binary tree structure of the data. Under independence between the process leading to the missing data and the BAR process and suitable assumptions on the driven noise, we establish the strong consistency of our estimators on the set of non-extinction of the Galton-Watson process, via a martingale approach. We also prove a quadratic strong law and the asymptotic normality.</description><identifier>ISSN: 1935-7524</identifier><identifier>EISSN: 1935-7524</identifier><identifier>DOI: 10.1214/11-EJS643</identifier><language>eng</language><publisher>Shaker Heights, OH : Institute of Mathematical Statistics</publisher><subject>Mathematics ; Probability ; Statistics ; Statistics Theory</subject><ispartof>Electronic journal of statistics, 2011-01, Vol.5 (none), p.1313-1353</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-9ae438ac63cc9386f28ad9942d5a05ef8b15d86d75d46a5d08894e810c534a563</citedby><cites>FETCH-LOGICAL-c355t-9ae438ac63cc9386f28ad9942d5a05ef8b15d86d75d46a5d08894e810c534a563</cites><orcidid>0000-0003-2509-1431 ; 0000-0002-7176-912X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00545447$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Saporta, Benoîte</creatorcontrib><creatorcontrib>Gégout-Petit, Anne</creatorcontrib><creatorcontrib>Marsalle, Laurence</creatorcontrib><title>Parameters estimation for asymmetric bifurcating autoregressive processes with missing data</title><title>Electronic journal of statistics</title><description>We estimate the unknown parameters of an asymmetric bifurcating autoregressive process (BAR) when some of the data are missing. In this aim, we model the observed data by a two-type Galton-Watson process consistent with the binary tree structure of the data. Under independence between the process leading to the missing data and the BAR process and suitable assumptions on the driven noise, we establish the strong consistency of our estimators on the set of non-extinction of the Galton-Watson process, via a martingale approach. We also prove a quadratic strong law and the asymptotic normality.</description><subject>Mathematics</subject><subject>Probability</subject><subject>Statistics</subject><subject>Statistics Theory</subject><issn>1935-7524</issn><issn>1935-7524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNUMtKAzEUDaJgrS78g2xdjCaTx2SWpVSrFBTUlYtwm0cb6XRKklb696ZU1NU9nMeFcxC6puSW1pTfUVpNnl4lZydoQFsmqkbU_PQfPkcXKX0SIlQt5QB9vECEzmUXE3Yphw5y6NfY9xFD2ndFicHgefDbaIq0XmDY5j66RXQphZ3Dm9ibAl3CXyEvcRcKXVwWMlyiMw-r5K5-7hC930_extNq9vzwOB7NKsOEyFULjjMFRjJjWqakrxXYtuW1FUCE82pOhVXSNsJyCcISpVruFCVGMA5CsiG6Of5dwkpvYukQ97qHoKejmT5wpS0XnDc7-uc1sU8pOv8boEQfFtSU6uOC7BvLZWSJ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>de Saporta, Benoîte</creator><creator>Gégout-Petit, Anne</creator><creator>Marsalle, Laurence</creator><general>Shaker Heights, OH : Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2509-1431</orcidid><orcidid>https://orcid.org/0000-0002-7176-912X</orcidid></search><sort><creationdate>20110101</creationdate><title>Parameters estimation for asymmetric bifurcating autoregressive processes with missing data</title><author>de Saporta, Benoîte ; Gégout-Petit, Anne ; Marsalle, Laurence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-9ae438ac63cc9386f28ad9942d5a05ef8b15d86d75d46a5d08894e810c534a563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Probability</topic><topic>Statistics</topic><topic>Statistics Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Saporta, Benoîte</creatorcontrib><creatorcontrib>Gégout-Petit, Anne</creatorcontrib><creatorcontrib>Marsalle, Laurence</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Electronic journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Saporta, Benoîte</au><au>Gégout-Petit, Anne</au><au>Marsalle, Laurence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameters estimation for asymmetric bifurcating autoregressive processes with missing data</atitle><jtitle>Electronic journal of statistics</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>5</volume><issue>none</issue><spage>1313</spage><epage>1353</epage><pages>1313-1353</pages><issn>1935-7524</issn><eissn>1935-7524</eissn><abstract>We estimate the unknown parameters of an asymmetric bifurcating autoregressive process (BAR) when some of the data are missing. In this aim, we model the observed data by a two-type Galton-Watson process consistent with the binary tree structure of the data. Under independence between the process leading to the missing data and the BAR process and suitable assumptions on the driven noise, we establish the strong consistency of our estimators on the set of non-extinction of the Galton-Watson process, via a martingale approach. We also prove a quadratic strong law and the asymptotic normality.</abstract><pub>Shaker Heights, OH : Institute of Mathematical Statistics</pub><doi>10.1214/11-EJS643</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0003-2509-1431</orcidid><orcidid>https://orcid.org/0000-0002-7176-912X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-7524 |
ispartof | Electronic journal of statistics, 2011-01, Vol.5 (none), p.1313-1353 |
issn | 1935-7524 1935-7524 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00545447v1 |
source | DOAJ Directory of Open Access Journals; Project Euclid Open Access; EZB-FREE-00999 freely available EZB journals |
subjects | Mathematics Probability Statistics Statistics Theory |
title | Parameters estimation for asymmetric bifurcating autoregressive processes with missing data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameters%20estimation%20for%20asymmetric%20bifurcating%20autoregressive%20processes%20with%20missing%20data&rft.jtitle=Electronic%20journal%20of%20statistics&rft.au=de%20Saporta,%20Beno%C3%AEte&rft.date=2011-01-01&rft.volume=5&rft.issue=none&rft.spage=1313&rft.epage=1353&rft.pages=1313-1353&rft.issn=1935-7524&rft.eissn=1935-7524&rft_id=info:doi/10.1214/11-EJS643&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00545447v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |