Interaction between anisotropic plastic deformation and damage evolution in Al 2198 sheet metal
Deformation anisotropy of sheet aluminium alloy 2198 (Al–Cu–Li) has been investigated by means of mechanical testing of notched specimens and Kahn-type fracture specimens, loaded in the rolling direction ( L) or in the transverse direction ( T). Fracture mechanisms were investigated via scanning ele...
Gespeichert in:
Veröffentlicht in: | Engineering fracture mechanics 2010-11, Vol.77 (17), p.3501-3518 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3518 |
---|---|
container_issue | 17 |
container_start_page | 3501 |
container_title | Engineering fracture mechanics |
container_volume | 77 |
creator | Steglich, D. Wafai, H. Besson, J. |
description | Deformation anisotropy of sheet aluminium alloy 2198 (Al–Cu–Li) has been investigated by means of mechanical testing of notched specimens and Kahn-type fracture specimens, loaded in the rolling direction (
L) or in the transverse direction (
T). Fracture mechanisms were investigated via scanning electron microscopy. Contributions to failure are identified as growth of initial voids accompanied by a significant nucleation of a second population of cavities and transgranular failure. A model based on the Gurson–Tvergaard–Needleman (GTN) approach of porous metal plasticity incorporating isotropic voids, direction-dependent void growth, void nucleation at a second population of inclusions and triaxiality-dependent void coalescence has been used to predict the mechanical response of test samples. The model parameters have been calibrated by means of 3D unit cell simulations, revealing the interaction between the plastic anisotropy of the matrix material and void growth. The model has been successfully used to describe and predict direction-dependent deformation behaviour, crack propagation and, in particular, toughness anisotropy. |
doi_str_mv | 10.1016/j.engfracmech.2010.08.021 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00542469v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794410003905</els_id><sourcerecordid>S0013794410003905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-672b2e1d90cbc7cb566c5d757a1fe44c9edeac3caed95cf25da089f9f68d1a8f3</originalsourceid><addsrcrecordid>eNqNkE-rUzEQxYMoWJ9-h7hw4aJ1kvs3y1LU96DgRtdhOpm8ptybW5JY8dubvsrDpasZDr9zhjlCvFewUaD6T6cNx0efkGam40ZD1WHcgFYvxEqNQ7MeGtW9FCsAVXfTtq_Fm5xPADD0I6yEfYiFq72EJcoDl1_MUWIMeSlpOQeS5wlzqdOxX9KMTxxGJx3O-MiSL8v080kMUW4nqZUZZT4yFzlzwemteOVxyvzu77wTP758_r67X--_fX3Ybfdrapu-rPtBHzQrZ4AONNCh63vq3NANqDy3LRl2jNQQsjMded05hNF44_vRKRx9cyc-3nKPONlzCjOm33bBYO-3e3vVALpWt725qMqaG0tpyTmxfzYosNdW7cn-06q9tmphtLXV6v1w854xE06ViRTyc4BuWm2gM5Xb3TiuT18CJ5spcCR2ITEV65bwH9f-AFCElOE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interaction between anisotropic plastic deformation and damage evolution in Al 2198 sheet metal</title><source>Access via ScienceDirect (Elsevier)</source><creator>Steglich, D. ; Wafai, H. ; Besson, J.</creator><creatorcontrib>Steglich, D. ; Wafai, H. ; Besson, J.</creatorcontrib><description>Deformation anisotropy of sheet aluminium alloy 2198 (Al–Cu–Li) has been investigated by means of mechanical testing of notched specimens and Kahn-type fracture specimens, loaded in the rolling direction (
L) or in the transverse direction (
T). Fracture mechanisms were investigated via scanning electron microscopy. Contributions to failure are identified as growth of initial voids accompanied by a significant nucleation of a second population of cavities and transgranular failure. A model based on the Gurson–Tvergaard–Needleman (GTN) approach of porous metal plasticity incorporating isotropic voids, direction-dependent void growth, void nucleation at a second population of inclusions and triaxiality-dependent void coalescence has been used to predict the mechanical response of test samples. The model parameters have been calibrated by means of 3D unit cell simulations, revealing the interaction between the plastic anisotropy of the matrix material and void growth. The model has been successfully used to describe and predict direction-dependent deformation behaviour, crack propagation and, in particular, toughness anisotropy.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2010.08.021</identifier><identifier>CODEN: EFMEAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anisotropy ; Ductile damage ; Engineering Sciences ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Kahn specimen ; Materials ; Physics ; Plasticity ; Solid mechanics ; Structural and continuum mechanics ; Unit cells ; Void growth</subject><ispartof>Engineering fracture mechanics, 2010-11, Vol.77 (17), p.3501-3518</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-672b2e1d90cbc7cb566c5d757a1fe44c9edeac3caed95cf25da089f9f68d1a8f3</citedby><cites>FETCH-LOGICAL-c436t-672b2e1d90cbc7cb566c5d757a1fe44c9edeac3caed95cf25da089f9f68d1a8f3</cites><orcidid>0000-0003-1975-2408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2010.08.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23429059$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://minesparis-psl.hal.science/hal-00542469$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Steglich, D.</creatorcontrib><creatorcontrib>Wafai, H.</creatorcontrib><creatorcontrib>Besson, J.</creatorcontrib><title>Interaction between anisotropic plastic deformation and damage evolution in Al 2198 sheet metal</title><title>Engineering fracture mechanics</title><description>Deformation anisotropy of sheet aluminium alloy 2198 (Al–Cu–Li) has been investigated by means of mechanical testing of notched specimens and Kahn-type fracture specimens, loaded in the rolling direction (
L) or in the transverse direction (
T). Fracture mechanisms were investigated via scanning electron microscopy. Contributions to failure are identified as growth of initial voids accompanied by a significant nucleation of a second population of cavities and transgranular failure. A model based on the Gurson–Tvergaard–Needleman (GTN) approach of porous metal plasticity incorporating isotropic voids, direction-dependent void growth, void nucleation at a second population of inclusions and triaxiality-dependent void coalescence has been used to predict the mechanical response of test samples. The model parameters have been calibrated by means of 3D unit cell simulations, revealing the interaction between the plastic anisotropy of the matrix material and void growth. The model has been successfully used to describe and predict direction-dependent deformation behaviour, crack propagation and, in particular, toughness anisotropy.</description><subject>Anisotropy</subject><subject>Ductile damage</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Kahn specimen</subject><subject>Materials</subject><subject>Physics</subject><subject>Plasticity</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Unit cells</subject><subject>Void growth</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE-rUzEQxYMoWJ9-h7hw4aJ1kvs3y1LU96DgRtdhOpm8ptybW5JY8dubvsrDpasZDr9zhjlCvFewUaD6T6cNx0efkGam40ZD1WHcgFYvxEqNQ7MeGtW9FCsAVXfTtq_Fm5xPADD0I6yEfYiFq72EJcoDl1_MUWIMeSlpOQeS5wlzqdOxX9KMTxxGJx3O-MiSL8v080kMUW4nqZUZZT4yFzlzwemteOVxyvzu77wTP758_r67X--_fX3Ybfdrapu-rPtBHzQrZ4AONNCh63vq3NANqDy3LRl2jNQQsjMded05hNF44_vRKRx9cyc-3nKPONlzCjOm33bBYO-3e3vVALpWt725qMqaG0tpyTmxfzYosNdW7cn-06q9tmphtLXV6v1w854xE06ViRTyc4BuWm2gM5Xb3TiuT18CJ5spcCR2ITEV65bwH9f-AFCElOE</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Steglich, D.</creator><creator>Wafai, H.</creator><creator>Besson, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1975-2408</orcidid></search><sort><creationdate>20101101</creationdate><title>Interaction between anisotropic plastic deformation and damage evolution in Al 2198 sheet metal</title><author>Steglich, D. ; Wafai, H. ; Besson, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-672b2e1d90cbc7cb566c5d757a1fe44c9edeac3caed95cf25da089f9f68d1a8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anisotropy</topic><topic>Ductile damage</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Kahn specimen</topic><topic>Materials</topic><topic>Physics</topic><topic>Plasticity</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Unit cells</topic><topic>Void growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steglich, D.</creatorcontrib><creatorcontrib>Wafai, H.</creatorcontrib><creatorcontrib>Besson, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steglich, D.</au><au>Wafai, H.</au><au>Besson, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction between anisotropic plastic deformation and damage evolution in Al 2198 sheet metal</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>77</volume><issue>17</issue><spage>3501</spage><epage>3518</epage><pages>3501-3518</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><coden>EFMEAH</coden><abstract>Deformation anisotropy of sheet aluminium alloy 2198 (Al–Cu–Li) has been investigated by means of mechanical testing of notched specimens and Kahn-type fracture specimens, loaded in the rolling direction (
L) or in the transverse direction (
T). Fracture mechanisms were investigated via scanning electron microscopy. Contributions to failure are identified as growth of initial voids accompanied by a significant nucleation of a second population of cavities and transgranular failure. A model based on the Gurson–Tvergaard–Needleman (GTN) approach of porous metal plasticity incorporating isotropic voids, direction-dependent void growth, void nucleation at a second population of inclusions and triaxiality-dependent void coalescence has been used to predict the mechanical response of test samples. The model parameters have been calibrated by means of 3D unit cell simulations, revealing the interaction between the plastic anisotropy of the matrix material and void growth. The model has been successfully used to describe and predict direction-dependent deformation behaviour, crack propagation and, in particular, toughness anisotropy.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2010.08.021</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1975-2408</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7944 |
ispartof | Engineering fracture mechanics, 2010-11, Vol.77 (17), p.3501-3518 |
issn | 0013-7944 1873-7315 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00542469v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Anisotropy Ductile damage Engineering Sciences Exact sciences and technology Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Inelasticity (thermoplasticity, viscoplasticity...) Kahn specimen Materials Physics Plasticity Solid mechanics Structural and continuum mechanics Unit cells Void growth |
title | Interaction between anisotropic plastic deformation and damage evolution in Al 2198 sheet metal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20between%20anisotropic%20plastic%20deformation%20and%20damage%20evolution%20in%20Al%202198%20sheet%20metal&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Steglich,%20D.&rft.date=2010-11-01&rft.volume=77&rft.issue=17&rft.spage=3501&rft.epage=3518&rft.pages=3501-3518&rft.issn=0013-7944&rft.eissn=1873-7315&rft.coden=EFMEAH&rft_id=info:doi/10.1016/j.engfracmech.2010.08.021&rft_dat=%3Celsevier_hal_p%3ES0013794410003905%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0013794410003905&rfr_iscdi=true |