Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact

This paper presents a numerical model that is capable of simulating microstructural evolution during simple solid-state sintering of a complex 3D powder particle compact. This model, a Potts kinetic Monte Carlo model, is a true mesoscale model that can simulate a large number of particles while reso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2010-04, Vol.48 (2), p.317-325
Hauptverfasser: Tikare, Veena, Braginsky, Michael, Bouvard, Didier, Vagnon, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 325
container_issue 2
container_start_page 317
container_title Computational materials science
container_volume 48
creator Tikare, Veena
Braginsky, Michael
Bouvard, Didier
Vagnon, Alexander
description This paper presents a numerical model that is capable of simulating microstructural evolution during simple solid-state sintering of a complex 3D powder particle compact. This model, a Potts kinetic Monte Carlo model, is a true mesoscale model that can simulate a large number of particles while resolving microstructural features such as particles, necks, pores and more in detail. Furthermore, it is shown that this model can simulate all the stages of sintering from the initial particle contact to neck growth with open, percolating porosity to closed isolated pores seamlessly. The various kinetic processes that lead to densification and other microstructural changes are shown to be simulated correctly. The model is demonstrated by comparing the microstructural evolution resulting from simulation to experimental results, namely 3D microtomographic images obtained from synchrotron radiation of a Cu-powder compact while it was sintering. For quantitative comparison, we extrapolated a grain structure into the simple microtomographic image that consists of mass distribution only.
doi_str_mv 10.1016/j.commatsci.2010.01.013
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00528004v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025610000315</els_id><sourcerecordid>oai_HAL_hal_00528004v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-3b6d9c4b25835b30a803b6eac175759fb56556e8afbaeb0ba9ca8378010a6d3b3</originalsourceid><addsrcrecordid>eNqFUMtu2zAQJIoGqOvkG8pLDjnIWYqmHkfDfTiA0V6SM7GiVjUNSTRIykX_PpRd-FpgARKzM7M7y9gXASsBong-rowbBozB2FUOCQWRSn5gC1GVdQYViI9sAXVeZpCr4hP7HMIRkrKu8gU7_pwG8tZgz4Mdph6jdSN3HR-s8S5EP5k4-dSls-unS7OdvB1_J_oY6fLDyOOB-EDBhWRE3I4cufzKT-5PS56n_U5o4j2767AP9PDvXbK3799et7ts_-vHy3azz8x6rWImm6KtzbrJVSVVIwErSBChEaUqVd01qlCqoAq7BqmBBmuDlSxTTMCilY1csqer7wF7ffJ2QP9XO7R6t9nrGQNQeQWwPovELa_cOWzw1N0EAvR8Xn3Ut_Pq-bwaRCqZlI9X5Qnn0J3H0dhwk-dpfVWXdeJtrjxKkc-WvE5ONBpqrScTdevsf2e9Ax-8lpM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tikare, Veena ; Braginsky, Michael ; Bouvard, Didier ; Vagnon, Alexander</creator><creatorcontrib>Tikare, Veena ; Braginsky, Michael ; Bouvard, Didier ; Vagnon, Alexander</creatorcontrib><description>This paper presents a numerical model that is capable of simulating microstructural evolution during simple solid-state sintering of a complex 3D powder particle compact. This model, a Potts kinetic Monte Carlo model, is a true mesoscale model that can simulate a large number of particles while resolving microstructural features such as particles, necks, pores and more in detail. Furthermore, it is shown that this model can simulate all the stages of sintering from the initial particle contact to neck growth with open, percolating porosity to closed isolated pores seamlessly. The various kinetic processes that lead to densification and other microstructural changes are shown to be simulated correctly. The model is demonstrated by comparing the microstructural evolution resulting from simulation to experimental results, namely 3D microtomographic images obtained from synchrotron radiation of a Cu-powder compact while it was sintering. For quantitative comparison, we extrapolated a grain structure into the simple microtomographic image that consists of mass distribution only.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2010.01.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Chemical Sciences ; Cross-disciplinary physics: materials science; rheology ; Densification ; Exact sciences and technology ; Material chemistry ; Materials science ; Materials synthesis; materials processing ; Metal powders ; Metals. Metallurgy ; Microstructural evolution ; Modeling ; Numerical simulation ; Physics ; Powder metallurgy. Composite materials ; Production techniques ; Sintering</subject><ispartof>Computational materials science, 2010-04, Vol.48 (2), p.317-325</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-3b6d9c4b25835b30a803b6eac175759fb56556e8afbaeb0ba9ca8378010a6d3b3</citedby><cites>FETCH-LOGICAL-c445t-3b6d9c4b25835b30a803b6eac175759fb56556e8afbaeb0ba9ca8378010a6d3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2010.01.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22585979$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00528004$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tikare, Veena</creatorcontrib><creatorcontrib>Braginsky, Michael</creatorcontrib><creatorcontrib>Bouvard, Didier</creatorcontrib><creatorcontrib>Vagnon, Alexander</creatorcontrib><title>Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact</title><title>Computational materials science</title><description>This paper presents a numerical model that is capable of simulating microstructural evolution during simple solid-state sintering of a complex 3D powder particle compact. This model, a Potts kinetic Monte Carlo model, is a true mesoscale model that can simulate a large number of particles while resolving microstructural features such as particles, necks, pores and more in detail. Furthermore, it is shown that this model can simulate all the stages of sintering from the initial particle contact to neck growth with open, percolating porosity to closed isolated pores seamlessly. The various kinetic processes that lead to densification and other microstructural changes are shown to be simulated correctly. The model is demonstrated by comparing the microstructural evolution resulting from simulation to experimental results, namely 3D microtomographic images obtained from synchrotron radiation of a Cu-powder compact while it was sintering. For quantitative comparison, we extrapolated a grain structure into the simple microtomographic image that consists of mass distribution only.</description><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Densification</subject><subject>Exact sciences and technology</subject><subject>Material chemistry</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Metal powders</subject><subject>Metals. Metallurgy</subject><subject>Microstructural evolution</subject><subject>Modeling</subject><subject>Numerical simulation</subject><subject>Physics</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>Sintering</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUMtu2zAQJIoGqOvkG8pLDjnIWYqmHkfDfTiA0V6SM7GiVjUNSTRIykX_PpRd-FpgARKzM7M7y9gXASsBong-rowbBozB2FUOCQWRSn5gC1GVdQYViI9sAXVeZpCr4hP7HMIRkrKu8gU7_pwG8tZgz4Mdph6jdSN3HR-s8S5EP5k4-dSls-unS7OdvB1_J_oY6fLDyOOB-EDBhWRE3I4cufzKT-5PS56n_U5o4j2767AP9PDvXbK3799et7ts_-vHy3azz8x6rWImm6KtzbrJVSVVIwErSBChEaUqVd01qlCqoAq7BqmBBmuDlSxTTMCilY1csqer7wF7ffJ2QP9XO7R6t9nrGQNQeQWwPovELa_cOWzw1N0EAvR8Xn3Ut_Pq-bwaRCqZlI9X5Qnn0J3H0dhwk-dpfVWXdeJtrjxKkc-WvE5ONBpqrScTdevsf2e9Ax-8lpM</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Tikare, Veena</creator><creator>Braginsky, Michael</creator><creator>Bouvard, Didier</creator><creator>Vagnon, Alexander</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20100401</creationdate><title>Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact</title><author>Tikare, Veena ; Braginsky, Michael ; Bouvard, Didier ; Vagnon, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-3b6d9c4b25835b30a803b6eac175759fb56556e8afbaeb0ba9ca8378010a6d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Densification</topic><topic>Exact sciences and technology</topic><topic>Material chemistry</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Metal powders</topic><topic>Metals. Metallurgy</topic><topic>Microstructural evolution</topic><topic>Modeling</topic><topic>Numerical simulation</topic><topic>Physics</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>Sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tikare, Veena</creatorcontrib><creatorcontrib>Braginsky, Michael</creatorcontrib><creatorcontrib>Bouvard, Didier</creatorcontrib><creatorcontrib>Vagnon, Alexander</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tikare, Veena</au><au>Braginsky, Michael</au><au>Bouvard, Didier</au><au>Vagnon, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact</atitle><jtitle>Computational materials science</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>48</volume><issue>2</issue><spage>317</spage><epage>325</epage><pages>317-325</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>This paper presents a numerical model that is capable of simulating microstructural evolution during simple solid-state sintering of a complex 3D powder particle compact. This model, a Potts kinetic Monte Carlo model, is a true mesoscale model that can simulate a large number of particles while resolving microstructural features such as particles, necks, pores and more in detail. Furthermore, it is shown that this model can simulate all the stages of sintering from the initial particle contact to neck growth with open, percolating porosity to closed isolated pores seamlessly. The various kinetic processes that lead to densification and other microstructural changes are shown to be simulated correctly. The model is demonstrated by comparing the microstructural evolution resulting from simulation to experimental results, namely 3D microtomographic images obtained from synchrotron radiation of a Cu-powder compact while it was sintering. For quantitative comparison, we extrapolated a grain structure into the simple microtomographic image that consists of mass distribution only.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2010.01.013</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2010-04, Vol.48 (2), p.317-325
issn 0927-0256
1879-0801
language eng
recordid cdi_hal_primary_oai_HAL_hal_00528004v1
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Chemical Sciences
Cross-disciplinary physics: materials science
rheology
Densification
Exact sciences and technology
Material chemistry
Materials science
Materials synthesis
materials processing
Metal powders
Metals. Metallurgy
Microstructural evolution
Modeling
Numerical simulation
Physics
Powder metallurgy. Composite materials
Production techniques
Sintering
title Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20microstructural%20evolution%20during%20sintering%20at%20the%20mesoscale%20in%20a%203D%20powder%20compact&rft.jtitle=Computational%20materials%20science&rft.au=Tikare,%20Veena&rft.date=2010-04-01&rft.volume=48&rft.issue=2&rft.spage=317&rft.epage=325&rft.pages=317-325&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2010.01.013&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00528004v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0927025610000315&rfr_iscdi=true