Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact
This paper presents a numerical model that is capable of simulating microstructural evolution during simple solid-state sintering of a complex 3D powder particle compact. This model, a Potts kinetic Monte Carlo model, is a true mesoscale model that can simulate a large number of particles while reso...
Gespeichert in:
Veröffentlicht in: | Computational materials science 2010-04, Vol.48 (2), p.317-325 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 325 |
---|---|
container_issue | 2 |
container_start_page | 317 |
container_title | Computational materials science |
container_volume | 48 |
creator | Tikare, Veena Braginsky, Michael Bouvard, Didier Vagnon, Alexander |
description | This paper presents a numerical model that is capable of simulating microstructural evolution during simple solid-state sintering of a complex 3D powder particle compact. This model, a Potts kinetic Monte Carlo model, is a true mesoscale model that can simulate a large number of particles while resolving microstructural features such as particles, necks, pores and more in detail. Furthermore, it is shown that this model can simulate all the stages of sintering from the initial particle contact to neck growth with open, percolating porosity to closed isolated pores seamlessly. The various kinetic processes that lead to densification and other microstructural changes are shown to be simulated correctly. The model is demonstrated by comparing the microstructural evolution resulting from simulation to experimental results, namely 3D microtomographic images obtained from synchrotron radiation of a Cu-powder compact while it was sintering. For quantitative comparison, we extrapolated a grain structure into the simple microtomographic image that consists of mass distribution only. |
doi_str_mv | 10.1016/j.commatsci.2010.01.013 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00528004v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025610000315</els_id><sourcerecordid>oai_HAL_hal_00528004v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-3b6d9c4b25835b30a803b6eac175759fb56556e8afbaeb0ba9ca8378010a6d3b3</originalsourceid><addsrcrecordid>eNqFUMtu2zAQJIoGqOvkG8pLDjnIWYqmHkfDfTiA0V6SM7GiVjUNSTRIykX_PpRd-FpgARKzM7M7y9gXASsBong-rowbBozB2FUOCQWRSn5gC1GVdQYViI9sAXVeZpCr4hP7HMIRkrKu8gU7_pwG8tZgz4Mdph6jdSN3HR-s8S5EP5k4-dSls-unS7OdvB1_J_oY6fLDyOOB-EDBhWRE3I4cufzKT-5PS56n_U5o4j2767AP9PDvXbK3799et7ts_-vHy3azz8x6rWImm6KtzbrJVSVVIwErSBChEaUqVd01qlCqoAq7BqmBBmuDlSxTTMCilY1csqer7wF7ffJ2QP9XO7R6t9nrGQNQeQWwPovELa_cOWzw1N0EAvR8Xn3Ut_Pq-bwaRCqZlI9X5Qnn0J3H0dhwk-dpfVWXdeJtrjxKkc-WvE5ONBpqrScTdevsf2e9Ax-8lpM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tikare, Veena ; Braginsky, Michael ; Bouvard, Didier ; Vagnon, Alexander</creator><creatorcontrib>Tikare, Veena ; Braginsky, Michael ; Bouvard, Didier ; Vagnon, Alexander</creatorcontrib><description>This paper presents a numerical model that is capable of simulating microstructural evolution during simple solid-state sintering of a complex 3D powder particle compact. This model, a Potts kinetic Monte Carlo model, is a true mesoscale model that can simulate a large number of particles while resolving microstructural features such as particles, necks, pores and more in detail. Furthermore, it is shown that this model can simulate all the stages of sintering from the initial particle contact to neck growth with open, percolating porosity to closed isolated pores seamlessly. The various kinetic processes that lead to densification and other microstructural changes are shown to be simulated correctly. The model is demonstrated by comparing the microstructural evolution resulting from simulation to experimental results, namely 3D microtomographic images obtained from synchrotron radiation of a Cu-powder compact while it was sintering. For quantitative comparison, we extrapolated a grain structure into the simple microtomographic image that consists of mass distribution only.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2010.01.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Chemical Sciences ; Cross-disciplinary physics: materials science; rheology ; Densification ; Exact sciences and technology ; Material chemistry ; Materials science ; Materials synthesis; materials processing ; Metal powders ; Metals. Metallurgy ; Microstructural evolution ; Modeling ; Numerical simulation ; Physics ; Powder metallurgy. Composite materials ; Production techniques ; Sintering</subject><ispartof>Computational materials science, 2010-04, Vol.48 (2), p.317-325</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-3b6d9c4b25835b30a803b6eac175759fb56556e8afbaeb0ba9ca8378010a6d3b3</citedby><cites>FETCH-LOGICAL-c445t-3b6d9c4b25835b30a803b6eac175759fb56556e8afbaeb0ba9ca8378010a6d3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2010.01.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22585979$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00528004$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tikare, Veena</creatorcontrib><creatorcontrib>Braginsky, Michael</creatorcontrib><creatorcontrib>Bouvard, Didier</creatorcontrib><creatorcontrib>Vagnon, Alexander</creatorcontrib><title>Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact</title><title>Computational materials science</title><description>This paper presents a numerical model that is capable of simulating microstructural evolution during simple solid-state sintering of a complex 3D powder particle compact. This model, a Potts kinetic Monte Carlo model, is a true mesoscale model that can simulate a large number of particles while resolving microstructural features such as particles, necks, pores and more in detail. Furthermore, it is shown that this model can simulate all the stages of sintering from the initial particle contact to neck growth with open, percolating porosity to closed isolated pores seamlessly. The various kinetic processes that lead to densification and other microstructural changes are shown to be simulated correctly. The model is demonstrated by comparing the microstructural evolution resulting from simulation to experimental results, namely 3D microtomographic images obtained from synchrotron radiation of a Cu-powder compact while it was sintering. For quantitative comparison, we extrapolated a grain structure into the simple microtomographic image that consists of mass distribution only.</description><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Densification</subject><subject>Exact sciences and technology</subject><subject>Material chemistry</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Metal powders</subject><subject>Metals. Metallurgy</subject><subject>Microstructural evolution</subject><subject>Modeling</subject><subject>Numerical simulation</subject><subject>Physics</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>Sintering</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUMtu2zAQJIoGqOvkG8pLDjnIWYqmHkfDfTiA0V6SM7GiVjUNSTRIykX_PpRd-FpgARKzM7M7y9gXASsBong-rowbBozB2FUOCQWRSn5gC1GVdQYViI9sAXVeZpCr4hP7HMIRkrKu8gU7_pwG8tZgz4Mdph6jdSN3HR-s8S5EP5k4-dSls-unS7OdvB1_J_oY6fLDyOOB-EDBhWRE3I4cufzKT-5PS56n_U5o4j2767AP9PDvXbK3799et7ts_-vHy3azz8x6rWImm6KtzbrJVSVVIwErSBChEaUqVd01qlCqoAq7BqmBBmuDlSxTTMCilY1csqer7wF7ffJ2QP9XO7R6t9nrGQNQeQWwPovELa_cOWzw1N0EAvR8Xn3Ut_Pq-bwaRCqZlI9X5Qnn0J3H0dhwk-dpfVWXdeJtrjxKkc-WvE5ONBpqrScTdevsf2e9Ax-8lpM</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Tikare, Veena</creator><creator>Braginsky, Michael</creator><creator>Bouvard, Didier</creator><creator>Vagnon, Alexander</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20100401</creationdate><title>Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact</title><author>Tikare, Veena ; Braginsky, Michael ; Bouvard, Didier ; Vagnon, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-3b6d9c4b25835b30a803b6eac175759fb56556e8afbaeb0ba9ca8378010a6d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Densification</topic><topic>Exact sciences and technology</topic><topic>Material chemistry</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Metal powders</topic><topic>Metals. Metallurgy</topic><topic>Microstructural evolution</topic><topic>Modeling</topic><topic>Numerical simulation</topic><topic>Physics</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>Sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tikare, Veena</creatorcontrib><creatorcontrib>Braginsky, Michael</creatorcontrib><creatorcontrib>Bouvard, Didier</creatorcontrib><creatorcontrib>Vagnon, Alexander</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tikare, Veena</au><au>Braginsky, Michael</au><au>Bouvard, Didier</au><au>Vagnon, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact</atitle><jtitle>Computational materials science</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>48</volume><issue>2</issue><spage>317</spage><epage>325</epage><pages>317-325</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>This paper presents a numerical model that is capable of simulating microstructural evolution during simple solid-state sintering of a complex 3D powder particle compact. This model, a Potts kinetic Monte Carlo model, is a true mesoscale model that can simulate a large number of particles while resolving microstructural features such as particles, necks, pores and more in detail. Furthermore, it is shown that this model can simulate all the stages of sintering from the initial particle contact to neck growth with open, percolating porosity to closed isolated pores seamlessly. The various kinetic processes that lead to densification and other microstructural changes are shown to be simulated correctly. The model is demonstrated by comparing the microstructural evolution resulting from simulation to experimental results, namely 3D microtomographic images obtained from synchrotron radiation of a Cu-powder compact while it was sintering. For quantitative comparison, we extrapolated a grain structure into the simple microtomographic image that consists of mass distribution only.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2010.01.013</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0256 |
ispartof | Computational materials science, 2010-04, Vol.48 (2), p.317-325 |
issn | 0927-0256 1879-0801 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00528004v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Chemical Sciences Cross-disciplinary physics: materials science rheology Densification Exact sciences and technology Material chemistry Materials science Materials synthesis materials processing Metal powders Metals. Metallurgy Microstructural evolution Modeling Numerical simulation Physics Powder metallurgy. Composite materials Production techniques Sintering |
title | Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20microstructural%20evolution%20during%20sintering%20at%20the%20mesoscale%20in%20a%203D%20powder%20compact&rft.jtitle=Computational%20materials%20science&rft.au=Tikare,%20Veena&rft.date=2010-04-01&rft.volume=48&rft.issue=2&rft.spage=317&rft.epage=325&rft.pages=317-325&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2010.01.013&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00528004v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0927025610000315&rfr_iscdi=true |