Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time
In this paper we study planar polynomial differential systems of this form: d X d t = X ̇ = A ( X , Y ) , d Y d t = Y ̇ = B ( X , Y ) , where A , B ∈ Z [ X , Y ] and deg A ≤ d , deg B ≤ d , ‖ A ‖ ∞ ≤ H and ‖ B ‖ ∞ ≤ H . A lot of properties of planar polynomial differential systems are related to irr...
Gespeichert in:
Veröffentlicht in: | Journal of Complexity 2011-04, Vol.27 (2), p.246-262 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 262 |
---|---|
container_issue | 2 |
container_start_page | 246 |
container_title | Journal of Complexity |
container_volume | 27 |
creator | Chèze, Guillaume |
description | In this paper we study planar polynomial differential systems of this form:
d
X
d
t
=
X
̇
=
A
(
X
,
Y
)
,
d
Y
d
t
=
Y
̇
=
B
(
X
,
Y
)
,
where
A
,
B
∈
Z
[
X
,
Y
]
and
deg
A
≤
d
,
deg
B
≤
d
,
‖
A
‖
∞
≤
H
and
‖
B
‖
∞
≤
H
. A lot of properties of planar polynomial differential systems are related to irreducible Darboux polynomials of the corresponding derivation:
D
=
A
(
X
,
Y
)
∂
X
+
B
(
X
,
Y
)
∂
Y
. Darboux polynomials are usually computed with the method of undetermined coefficients. With this method we have to solve a polynomial system. We show that this approach can give rise to the computation of an exponential number of reducible Darboux polynomials. Here we show that the Lagutinskii–Pereira algorithm computes irreducible Darboux polynomials with degree smaller than
N
, with a polynomial number, relatively to
d
,
log
(
H
)
and
N
, binary operations. We also give a polynomial-time method to compute, if it exists, a rational first integral with bounded degree. |
doi_str_mv | 10.1016/j.jco.2010.10.004 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00517694v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0885064X10000968</els_id><sourcerecordid>oai_HAL_hal_00517694v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-a13bf94f65ec9e33f631188bf7062b72f9d0cbe85a201fce4823abe60b80d04b3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7j5yiFhnacjTlV5FKkSF5C4WY69po7SuHLSQv89TosQJ06rnZ1vpRlCrhnEDFhx28SNcnEChz0GyE7IhEEFUVICPyUT4DyPoMjez8lF3zcAjOUFmxAzd-vNdpCDdR11ht5LX7vtF924dt-5tZVtT2WnqT84ZEuN9f1AbTfghx-Pn3ZY0YB0GjXVQUQM1z88HewaL8mZCW68-plT8vb48DpfRMuXp-f5bBmptMyGSLK0NlVmihxVhWlqipQxzmtTQpHUZWIqDapGnsuQ1CjMeJLKGguoOWjI6nRKbo5_V7IVG2_X0u-Fk1YsZksxagA5K4sq27HgZUev8q7vPZpfgIEYSxWNCKWKsdRRCqUG5u7IYAixs-hFryx2CrX1qAahnf2H_ga3E4EO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chèze, Guillaume</creator><creatorcontrib>Chèze, Guillaume</creatorcontrib><description>In this paper we study planar polynomial differential systems of this form:
d
X
d
t
=
X
̇
=
A
(
X
,
Y
)
,
d
Y
d
t
=
Y
̇
=
B
(
X
,
Y
)
,
where
A
,
B
∈
Z
[
X
,
Y
]
and
deg
A
≤
d
,
deg
B
≤
d
,
‖
A
‖
∞
≤
H
and
‖
B
‖
∞
≤
H
. A lot of properties of planar polynomial differential systems are related to irreducible Darboux polynomials of the corresponding derivation:
D
=
A
(
X
,
Y
)
∂
X
+
B
(
X
,
Y
)
∂
Y
. Darboux polynomials are usually computed with the method of undetermined coefficients. With this method we have to solve a polynomial system. We show that this approach can give rise to the computation of an exponential number of reducible Darboux polynomials. Here we show that the Lagutinskii–Pereira algorithm computes irreducible Darboux polynomials with degree smaller than
N
, with a polynomial number, relatively to
d
,
log
(
H
)
and
N
, binary operations. We also give a polynomial-time method to compute, if it exists, a rational first integral with bounded degree.</description><identifier>ISSN: 0885-064X</identifier><identifier>EISSN: 1090-2708</identifier><identifier>DOI: 10.1016/j.jco.2010.10.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithm ; Classical Analysis and ODEs ; Commutative Algebra ; Complexity ; Computational Complexity ; Computer Science ; Darboux polynomials ; First integral ; Mathematics ; Symbolic Computation</subject><ispartof>Journal of Complexity, 2011-04, Vol.27 (2), p.246-262</ispartof><rights>2010 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-a13bf94f65ec9e33f631188bf7062b72f9d0cbe85a201fce4823abe60b80d04b3</citedby><cites>FETCH-LOGICAL-c374t-a13bf94f65ec9e33f631188bf7062b72f9d0cbe85a201fce4823abe60b80d04b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jco.2010.10.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00517694$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chèze, Guillaume</creatorcontrib><title>Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time</title><title>Journal of Complexity</title><description>In this paper we study planar polynomial differential systems of this form:
d
X
d
t
=
X
̇
=
A
(
X
,
Y
)
,
d
Y
d
t
=
Y
̇
=
B
(
X
,
Y
)
,
where
A
,
B
∈
Z
[
X
,
Y
]
and
deg
A
≤
d
,
deg
B
≤
d
,
‖
A
‖
∞
≤
H
and
‖
B
‖
∞
≤
H
. A lot of properties of planar polynomial differential systems are related to irreducible Darboux polynomials of the corresponding derivation:
D
=
A
(
X
,
Y
)
∂
X
+
B
(
X
,
Y
)
∂
Y
. Darboux polynomials are usually computed with the method of undetermined coefficients. With this method we have to solve a polynomial system. We show that this approach can give rise to the computation of an exponential number of reducible Darboux polynomials. Here we show that the Lagutinskii–Pereira algorithm computes irreducible Darboux polynomials with degree smaller than
N
, with a polynomial number, relatively to
d
,
log
(
H
)
and
N
, binary operations. We also give a polynomial-time method to compute, if it exists, a rational first integral with bounded degree.</description><subject>Algorithm</subject><subject>Classical Analysis and ODEs</subject><subject>Commutative Algebra</subject><subject>Complexity</subject><subject>Computational Complexity</subject><subject>Computer Science</subject><subject>Darboux polynomials</subject><subject>First integral</subject><subject>Mathematics</subject><subject>Symbolic Computation</subject><issn>0885-064X</issn><issn>1090-2708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7j5yiFhnacjTlV5FKkSF5C4WY69po7SuHLSQv89TosQJ06rnZ1vpRlCrhnEDFhx28SNcnEChz0GyE7IhEEFUVICPyUT4DyPoMjez8lF3zcAjOUFmxAzd-vNdpCDdR11ht5LX7vtF924dt-5tZVtT2WnqT84ZEuN9f1AbTfghx-Pn3ZY0YB0GjXVQUQM1z88HewaL8mZCW68-plT8vb48DpfRMuXp-f5bBmptMyGSLK0NlVmihxVhWlqipQxzmtTQpHUZWIqDapGnsuQ1CjMeJLKGguoOWjI6nRKbo5_V7IVG2_X0u-Fk1YsZksxagA5K4sq27HgZUev8q7vPZpfgIEYSxWNCKWKsdRRCqUG5u7IYAixs-hFryx2CrX1qAahnf2H_ga3E4EO</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Chèze, Guillaume</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20110401</creationdate><title>Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time</title><author>Chèze, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-a13bf94f65ec9e33f631188bf7062b72f9d0cbe85a201fce4823abe60b80d04b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm</topic><topic>Classical Analysis and ODEs</topic><topic>Commutative Algebra</topic><topic>Complexity</topic><topic>Computational Complexity</topic><topic>Computer Science</topic><topic>Darboux polynomials</topic><topic>First integral</topic><topic>Mathematics</topic><topic>Symbolic Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chèze, Guillaume</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chèze, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time</atitle><jtitle>Journal of Complexity</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>27</volume><issue>2</issue><spage>246</spage><epage>262</epage><pages>246-262</pages><issn>0885-064X</issn><eissn>1090-2708</eissn><abstract>In this paper we study planar polynomial differential systems of this form:
d
X
d
t
=
X
̇
=
A
(
X
,
Y
)
,
d
Y
d
t
=
Y
̇
=
B
(
X
,
Y
)
,
where
A
,
B
∈
Z
[
X
,
Y
]
and
deg
A
≤
d
,
deg
B
≤
d
,
‖
A
‖
∞
≤
H
and
‖
B
‖
∞
≤
H
. A lot of properties of planar polynomial differential systems are related to irreducible Darboux polynomials of the corresponding derivation:
D
=
A
(
X
,
Y
)
∂
X
+
B
(
X
,
Y
)
∂
Y
. Darboux polynomials are usually computed with the method of undetermined coefficients. With this method we have to solve a polynomial system. We show that this approach can give rise to the computation of an exponential number of reducible Darboux polynomials. Here we show that the Lagutinskii–Pereira algorithm computes irreducible Darboux polynomials with degree smaller than
N
, with a polynomial number, relatively to
d
,
log
(
H
)
and
N
, binary operations. We also give a polynomial-time method to compute, if it exists, a rational first integral with bounded degree.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jco.2010.10.004</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-064X |
ispartof | Journal of Complexity, 2011-04, Vol.27 (2), p.246-262 |
issn | 0885-064X 1090-2708 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00517694v1 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Algorithm Classical Analysis and ODEs Commutative Algebra Complexity Computational Complexity Computer Science Darboux polynomials First integral Mathematics Symbolic Computation |
title | Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20Darboux%20polynomials%20and%20rational%20first%20integrals%20with%20bounded%20degree%20in%20polynomial%20time&rft.jtitle=Journal%20of%20Complexity&rft.au=Ch%C3%A8ze,%20Guillaume&rft.date=2011-04-01&rft.volume=27&rft.issue=2&rft.spage=246&rft.epage=262&rft.pages=246-262&rft.issn=0885-064X&rft.eissn=1090-2708&rft_id=info:doi/10.1016/j.jco.2010.10.004&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00517694v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0885064X10000968&rfr_iscdi=true |