Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time

In this paper we study planar polynomial differential systems of this form: d X d t = X ̇ = A ( X , Y ) , d Y d t = Y ̇ = B ( X , Y ) , where A , B ∈ Z [ X , Y ] and deg A ≤ d , deg B ≤ d , ‖ A ‖ ∞ ≤ H and ‖ B ‖ ∞ ≤ H . A lot of properties of planar polynomial differential systems are related to irr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Complexity 2011-04, Vol.27 (2), p.246-262
1. Verfasser: Chèze, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 2
container_start_page 246
container_title Journal of Complexity
container_volume 27
creator Chèze, Guillaume
description In this paper we study planar polynomial differential systems of this form: d X d t = X ̇ = A ( X , Y ) , d Y d t = Y ̇ = B ( X , Y ) , where A , B ∈ Z [ X , Y ] and deg A ≤ d , deg B ≤ d , ‖ A ‖ ∞ ≤ H and ‖ B ‖ ∞ ≤ H . A lot of properties of planar polynomial differential systems are related to irreducible Darboux polynomials of the corresponding derivation: D = A ( X , Y ) ∂ X + B ( X , Y ) ∂ Y . Darboux polynomials are usually computed with the method of undetermined coefficients. With this method we have to solve a polynomial system. We show that this approach can give rise to the computation of an exponential number of reducible Darboux polynomials. Here we show that the Lagutinskii–Pereira algorithm computes irreducible Darboux polynomials with degree smaller than N , with a polynomial number, relatively to d , log ( H ) and N , binary operations. We also give a polynomial-time method to compute, if it exists, a rational first integral with bounded degree.
doi_str_mv 10.1016/j.jco.2010.10.004
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00517694v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0885064X10000968</els_id><sourcerecordid>oai_HAL_hal_00517694v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-a13bf94f65ec9e33f631188bf7062b72f9d0cbe85a201fce4823abe60b80d04b3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7j5yiFhnacjTlV5FKkSF5C4WY69po7SuHLSQv89TosQJ06rnZ1vpRlCrhnEDFhx28SNcnEChz0GyE7IhEEFUVICPyUT4DyPoMjez8lF3zcAjOUFmxAzd-vNdpCDdR11ht5LX7vtF924dt-5tZVtT2WnqT84ZEuN9f1AbTfghx-Pn3ZY0YB0GjXVQUQM1z88HewaL8mZCW68-plT8vb48DpfRMuXp-f5bBmptMyGSLK0NlVmihxVhWlqipQxzmtTQpHUZWIqDapGnsuQ1CjMeJLKGguoOWjI6nRKbo5_V7IVG2_X0u-Fk1YsZksxagA5K4sq27HgZUev8q7vPZpfgIEYSxWNCKWKsdRRCqUG5u7IYAixs-hFryx2CrX1qAahnf2H_ga3E4EO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chèze, Guillaume</creator><creatorcontrib>Chèze, Guillaume</creatorcontrib><description>In this paper we study planar polynomial differential systems of this form: d X d t = X ̇ = A ( X , Y ) , d Y d t = Y ̇ = B ( X , Y ) , where A , B ∈ Z [ X , Y ] and deg A ≤ d , deg B ≤ d , ‖ A ‖ ∞ ≤ H and ‖ B ‖ ∞ ≤ H . A lot of properties of planar polynomial differential systems are related to irreducible Darboux polynomials of the corresponding derivation: D = A ( X , Y ) ∂ X + B ( X , Y ) ∂ Y . Darboux polynomials are usually computed with the method of undetermined coefficients. With this method we have to solve a polynomial system. We show that this approach can give rise to the computation of an exponential number of reducible Darboux polynomials. Here we show that the Lagutinskii–Pereira algorithm computes irreducible Darboux polynomials with degree smaller than N , with a polynomial number, relatively to d , log ( H ) and N , binary operations. We also give a polynomial-time method to compute, if it exists, a rational first integral with bounded degree.</description><identifier>ISSN: 0885-064X</identifier><identifier>EISSN: 1090-2708</identifier><identifier>DOI: 10.1016/j.jco.2010.10.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithm ; Classical Analysis and ODEs ; Commutative Algebra ; Complexity ; Computational Complexity ; Computer Science ; Darboux polynomials ; First integral ; Mathematics ; Symbolic Computation</subject><ispartof>Journal of Complexity, 2011-04, Vol.27 (2), p.246-262</ispartof><rights>2010 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-a13bf94f65ec9e33f631188bf7062b72f9d0cbe85a201fce4823abe60b80d04b3</citedby><cites>FETCH-LOGICAL-c374t-a13bf94f65ec9e33f631188bf7062b72f9d0cbe85a201fce4823abe60b80d04b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jco.2010.10.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00517694$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chèze, Guillaume</creatorcontrib><title>Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time</title><title>Journal of Complexity</title><description>In this paper we study planar polynomial differential systems of this form: d X d t = X ̇ = A ( X , Y ) , d Y d t = Y ̇ = B ( X , Y ) , where A , B ∈ Z [ X , Y ] and deg A ≤ d , deg B ≤ d , ‖ A ‖ ∞ ≤ H and ‖ B ‖ ∞ ≤ H . A lot of properties of planar polynomial differential systems are related to irreducible Darboux polynomials of the corresponding derivation: D = A ( X , Y ) ∂ X + B ( X , Y ) ∂ Y . Darboux polynomials are usually computed with the method of undetermined coefficients. With this method we have to solve a polynomial system. We show that this approach can give rise to the computation of an exponential number of reducible Darboux polynomials. Here we show that the Lagutinskii–Pereira algorithm computes irreducible Darboux polynomials with degree smaller than N , with a polynomial number, relatively to d , log ( H ) and N , binary operations. We also give a polynomial-time method to compute, if it exists, a rational first integral with bounded degree.</description><subject>Algorithm</subject><subject>Classical Analysis and ODEs</subject><subject>Commutative Algebra</subject><subject>Complexity</subject><subject>Computational Complexity</subject><subject>Computer Science</subject><subject>Darboux polynomials</subject><subject>First integral</subject><subject>Mathematics</subject><subject>Symbolic Computation</subject><issn>0885-064X</issn><issn>1090-2708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7j5yiFhnacjTlV5FKkSF5C4WY69po7SuHLSQv89TosQJ06rnZ1vpRlCrhnEDFhx28SNcnEChz0GyE7IhEEFUVICPyUT4DyPoMjez8lF3zcAjOUFmxAzd-vNdpCDdR11ht5LX7vtF924dt-5tZVtT2WnqT84ZEuN9f1AbTfghx-Pn3ZY0YB0GjXVQUQM1z88HewaL8mZCW68-plT8vb48DpfRMuXp-f5bBmptMyGSLK0NlVmihxVhWlqipQxzmtTQpHUZWIqDapGnsuQ1CjMeJLKGguoOWjI6nRKbo5_V7IVG2_X0u-Fk1YsZksxagA5K4sq27HgZUev8q7vPZpfgIEYSxWNCKWKsdRRCqUG5u7IYAixs-hFryx2CrX1qAahnf2H_ga3E4EO</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Chèze, Guillaume</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20110401</creationdate><title>Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time</title><author>Chèze, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-a13bf94f65ec9e33f631188bf7062b72f9d0cbe85a201fce4823abe60b80d04b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm</topic><topic>Classical Analysis and ODEs</topic><topic>Commutative Algebra</topic><topic>Complexity</topic><topic>Computational Complexity</topic><topic>Computer Science</topic><topic>Darboux polynomials</topic><topic>First integral</topic><topic>Mathematics</topic><topic>Symbolic Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chèze, Guillaume</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chèze, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time</atitle><jtitle>Journal of Complexity</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>27</volume><issue>2</issue><spage>246</spage><epage>262</epage><pages>246-262</pages><issn>0885-064X</issn><eissn>1090-2708</eissn><abstract>In this paper we study planar polynomial differential systems of this form: d X d t = X ̇ = A ( X , Y ) , d Y d t = Y ̇ = B ( X , Y ) , where A , B ∈ Z [ X , Y ] and deg A ≤ d , deg B ≤ d , ‖ A ‖ ∞ ≤ H and ‖ B ‖ ∞ ≤ H . A lot of properties of planar polynomial differential systems are related to irreducible Darboux polynomials of the corresponding derivation: D = A ( X , Y ) ∂ X + B ( X , Y ) ∂ Y . Darboux polynomials are usually computed with the method of undetermined coefficients. With this method we have to solve a polynomial system. We show that this approach can give rise to the computation of an exponential number of reducible Darboux polynomials. Here we show that the Lagutinskii–Pereira algorithm computes irreducible Darboux polynomials with degree smaller than N , with a polynomial number, relatively to d , log ( H ) and N , binary operations. We also give a polynomial-time method to compute, if it exists, a rational first integral with bounded degree.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jco.2010.10.004</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-064X
ispartof Journal of Complexity, 2011-04, Vol.27 (2), p.246-262
issn 0885-064X
1090-2708
language eng
recordid cdi_hal_primary_oai_HAL_hal_00517694v1
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Algorithm
Classical Analysis and ODEs
Commutative Algebra
Complexity
Computational Complexity
Computer Science
Darboux polynomials
First integral
Mathematics
Symbolic Computation
title Computation of Darboux polynomials and rational first integrals with bounded degree in polynomial time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20Darboux%20polynomials%20and%20rational%20first%20integrals%20with%20bounded%20degree%20in%20polynomial%20time&rft.jtitle=Journal%20of%20Complexity&rft.au=Ch%C3%A8ze,%20Guillaume&rft.date=2011-04-01&rft.volume=27&rft.issue=2&rft.spage=246&rft.epage=262&rft.pages=246-262&rft.issn=0885-064X&rft.eissn=1090-2708&rft_id=info:doi/10.1016/j.jco.2010.10.004&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00517694v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0885064X10000968&rfr_iscdi=true