Dynamics of catalyst particle formation and multi-walled carbon nanotube growth in aerosol-assisted catalytic chemical vapor deposition

In aerosol-assisted catalytic chemical vapor deposition (CCVD), the catalyst and carbon precursors are introduced simultaneously in the reactor. Catalyst particles are formed in situ and aligned multi-walled CNTs grow at a high rate. To scale-up the process, it is crucial to understand the chemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2010-11, Vol.48 (13), p.3807-3816
Hauptverfasser: Castro, C., Pinault, M., Coste-Leconte, S., Porterat, D., Bendiab, N., Reynaud, C., Mayne-L’Hermite, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3816
container_issue 13
container_start_page 3807
container_title Carbon (New York)
container_volume 48
creator Castro, C.
Pinault, M.
Coste-Leconte, S.
Porterat, D.
Bendiab, N.
Reynaud, C.
Mayne-L’Hermite, M.
description In aerosol-assisted catalytic chemical vapor deposition (CCVD), the catalyst and carbon precursors are introduced simultaneously in the reactor. Catalyst particles are formed in situ and aligned multi-walled CNTs grow at a high rate. To scale-up the process, it is crucial to understand the chemical transformation of the precursors along the thermal gradient of the reactor, and to correlate nanotube growth with catalyst nanoparticle formation. The products synthesized along a cylindrical CVD reactor from an aerosol composed of ferrocene and toluene, as catalyst and carbon precursor, respectively, were studied. The product surface density and iron content are determined as a function of the location and the iron vapor pressure in the reactor. Samples are analyzed by electron microscopy, X-ray diffraction and Raman spectroscopy. We show the strong influence of the thermal gradient on location and rate of formation of both iron particles and CNTs, and demonstrate that catalyst particles are formed by gas phase homogeneous nucleation with a size which correlates with iron vapor pressure. They are gradually deposited on the reactor walls where nanotubes grow with an efficiency which is varying linearly with catalyst particle density. CNT crystallinity appears very high for a large range of temperature and iron content.
doi_str_mv 10.1016/j.carbon.2010.06.045
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00515587v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622310004513</els_id><sourcerecordid>855718913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-e8d0fc9939e524cf83ae349fc708ec4f3861cb325d1e9a67379ae142dec60853</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EEkvLG3DwDXHI1o7txLkgVQVapJW49G7NOhPWKycOtnerfQJeuw6peuRkefTNN5r5CfnE2ZYz3twctxbiPkzbmpUSa7ZMqjdkw3UrKqE7_pZsGGO6aupavCcfUjqWr9Rcbsjfb5cJRmcTDQO1kMFfUqYzxOysRzqEOEJ2YaIw9XQ8-eyqJ_Aee7qOpBNMIZ_2SH_H8JQP1BUUY0jBV5CSS_kfuniLkdoDlmHg6RnmEGmPc0hu8V-TdwP4hB9f3ivy-OP7491Dtft1__PudldZKXSuUPdssF0nOlS1tIMWgEJ2g22ZRisHoRtu96JWPccOmla0HSCXdY-2YVqJK_Jl1R7Amzm6EeLFBHDm4XZnlhpjiiul2zMv7OeVnWP4c8KUzeiSRe9hwnBKRivV8nJdUUi5krYsniIOr2rOzJKQOZr1XGZJyLDGlIRK29e1DcvCZ4fRJOtwsti7iDabPrj_C54BUvWetQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855718913</pqid></control><display><type>article</type><title>Dynamics of catalyst particle formation and multi-walled carbon nanotube growth in aerosol-assisted catalytic chemical vapor deposition</title><source>Elsevier ScienceDirect Journals</source><creator>Castro, C. ; Pinault, M. ; Coste-Leconte, S. ; Porterat, D. ; Bendiab, N. ; Reynaud, C. ; Mayne-L’Hermite, M.</creator><creatorcontrib>Castro, C. ; Pinault, M. ; Coste-Leconte, S. ; Porterat, D. ; Bendiab, N. ; Reynaud, C. ; Mayne-L’Hermite, M.</creatorcontrib><description>In aerosol-assisted catalytic chemical vapor deposition (CCVD), the catalyst and carbon precursors are introduced simultaneously in the reactor. Catalyst particles are formed in situ and aligned multi-walled CNTs grow at a high rate. To scale-up the process, it is crucial to understand the chemical transformation of the precursors along the thermal gradient of the reactor, and to correlate nanotube growth with catalyst nanoparticle formation. The products synthesized along a cylindrical CVD reactor from an aerosol composed of ferrocene and toluene, as catalyst and carbon precursor, respectively, were studied. The product surface density and iron content are determined as a function of the location and the iron vapor pressure in the reactor. Samples are analyzed by electron microscopy, X-ray diffraction and Raman spectroscopy. We show the strong influence of the thermal gradient on location and rate of formation of both iron particles and CNTs, and demonstrate that catalyst particles are formed by gas phase homogeneous nucleation with a size which correlates with iron vapor pressure. They are gradually deposited on the reactor walls where nanotubes grow with an efficiency which is varying linearly with catalyst particle density. CNT crystallinity appears very high for a large range of temperature and iron content.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2010.06.045</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aerosols ; Carbon ; Catalysts ; Chemical Sciences ; Chemical vapor deposition ; Density ; Iron ; Nanomaterials ; Nanostructure ; or physical chemistry ; Reactors ; Theoretical and</subject><ispartof>Carbon (New York), 2010-11, Vol.48 (13), p.3807-3816</ispartof><rights>2010 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-e8d0fc9939e524cf83ae349fc708ec4f3861cb325d1e9a67379ae142dec60853</citedby><cites>FETCH-LOGICAL-c438t-e8d0fc9939e524cf83ae349fc708ec4f3861cb325d1e9a67379ae142dec60853</cites><orcidid>0000-0002-5492-1978 ; 0000-0001-9011-5132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622310004513$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00515587$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Castro, C.</creatorcontrib><creatorcontrib>Pinault, M.</creatorcontrib><creatorcontrib>Coste-Leconte, S.</creatorcontrib><creatorcontrib>Porterat, D.</creatorcontrib><creatorcontrib>Bendiab, N.</creatorcontrib><creatorcontrib>Reynaud, C.</creatorcontrib><creatorcontrib>Mayne-L’Hermite, M.</creatorcontrib><title>Dynamics of catalyst particle formation and multi-walled carbon nanotube growth in aerosol-assisted catalytic chemical vapor deposition</title><title>Carbon (New York)</title><description>In aerosol-assisted catalytic chemical vapor deposition (CCVD), the catalyst and carbon precursors are introduced simultaneously in the reactor. Catalyst particles are formed in situ and aligned multi-walled CNTs grow at a high rate. To scale-up the process, it is crucial to understand the chemical transformation of the precursors along the thermal gradient of the reactor, and to correlate nanotube growth with catalyst nanoparticle formation. The products synthesized along a cylindrical CVD reactor from an aerosol composed of ferrocene and toluene, as catalyst and carbon precursor, respectively, were studied. The product surface density and iron content are determined as a function of the location and the iron vapor pressure in the reactor. Samples are analyzed by electron microscopy, X-ray diffraction and Raman spectroscopy. We show the strong influence of the thermal gradient on location and rate of formation of both iron particles and CNTs, and demonstrate that catalyst particles are formed by gas phase homogeneous nucleation with a size which correlates with iron vapor pressure. They are gradually deposited on the reactor walls where nanotubes grow with an efficiency which is varying linearly with catalyst particle density. CNT crystallinity appears very high for a large range of temperature and iron content.</description><subject>Aerosols</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Chemical Sciences</subject><subject>Chemical vapor deposition</subject><subject>Density</subject><subject>Iron</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>or physical chemistry</subject><subject>Reactors</subject><subject>Theoretical and</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi0EEkvLG3DwDXHI1o7txLkgVQVapJW49G7NOhPWKycOtnerfQJeuw6peuRkefTNN5r5CfnE2ZYz3twctxbiPkzbmpUSa7ZMqjdkw3UrKqE7_pZsGGO6aupavCcfUjqWr9Rcbsjfb5cJRmcTDQO1kMFfUqYzxOysRzqEOEJ2YaIw9XQ8-eyqJ_Aee7qOpBNMIZ_2SH_H8JQP1BUUY0jBV5CSS_kfuniLkdoDlmHg6RnmEGmPc0hu8V-TdwP4hB9f3ivy-OP7491Dtft1__PudldZKXSuUPdssF0nOlS1tIMWgEJ2g22ZRisHoRtu96JWPccOmla0HSCXdY-2YVqJK_Jl1R7Amzm6EeLFBHDm4XZnlhpjiiul2zMv7OeVnWP4c8KUzeiSRe9hwnBKRivV8nJdUUi5krYsniIOr2rOzJKQOZr1XGZJyLDGlIRK29e1DcvCZ4fRJOtwsti7iDabPrj_C54BUvWetQ</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Castro, C.</creator><creator>Pinault, M.</creator><creator>Coste-Leconte, S.</creator><creator>Porterat, D.</creator><creator>Bendiab, N.</creator><creator>Reynaud, C.</creator><creator>Mayne-L’Hermite, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5492-1978</orcidid><orcidid>https://orcid.org/0000-0001-9011-5132</orcidid></search><sort><creationdate>20101101</creationdate><title>Dynamics of catalyst particle formation and multi-walled carbon nanotube growth in aerosol-assisted catalytic chemical vapor deposition</title><author>Castro, C. ; Pinault, M. ; Coste-Leconte, S. ; Porterat, D. ; Bendiab, N. ; Reynaud, C. ; Mayne-L’Hermite, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-e8d0fc9939e524cf83ae349fc708ec4f3861cb325d1e9a67379ae142dec60853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerosols</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Chemical Sciences</topic><topic>Chemical vapor deposition</topic><topic>Density</topic><topic>Iron</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>or physical chemistry</topic><topic>Reactors</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, C.</creatorcontrib><creatorcontrib>Pinault, M.</creatorcontrib><creatorcontrib>Coste-Leconte, S.</creatorcontrib><creatorcontrib>Porterat, D.</creatorcontrib><creatorcontrib>Bendiab, N.</creatorcontrib><creatorcontrib>Reynaud, C.</creatorcontrib><creatorcontrib>Mayne-L’Hermite, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, C.</au><au>Pinault, M.</au><au>Coste-Leconte, S.</au><au>Porterat, D.</au><au>Bendiab, N.</au><au>Reynaud, C.</au><au>Mayne-L’Hermite, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of catalyst particle formation and multi-walled carbon nanotube growth in aerosol-assisted catalytic chemical vapor deposition</atitle><jtitle>Carbon (New York)</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>48</volume><issue>13</issue><spage>3807</spage><epage>3816</epage><pages>3807-3816</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>In aerosol-assisted catalytic chemical vapor deposition (CCVD), the catalyst and carbon precursors are introduced simultaneously in the reactor. Catalyst particles are formed in situ and aligned multi-walled CNTs grow at a high rate. To scale-up the process, it is crucial to understand the chemical transformation of the precursors along the thermal gradient of the reactor, and to correlate nanotube growth with catalyst nanoparticle formation. The products synthesized along a cylindrical CVD reactor from an aerosol composed of ferrocene and toluene, as catalyst and carbon precursor, respectively, were studied. The product surface density and iron content are determined as a function of the location and the iron vapor pressure in the reactor. Samples are analyzed by electron microscopy, X-ray diffraction and Raman spectroscopy. We show the strong influence of the thermal gradient on location and rate of formation of both iron particles and CNTs, and demonstrate that catalyst particles are formed by gas phase homogeneous nucleation with a size which correlates with iron vapor pressure. They are gradually deposited on the reactor walls where nanotubes grow with an efficiency which is varying linearly with catalyst particle density. CNT crystallinity appears very high for a large range of temperature and iron content.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2010.06.045</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5492-1978</orcidid><orcidid>https://orcid.org/0000-0001-9011-5132</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2010-11, Vol.48 (13), p.3807-3816
issn 0008-6223
1873-3891
language eng
recordid cdi_hal_primary_oai_HAL_hal_00515587v1
source Elsevier ScienceDirect Journals
subjects Aerosols
Carbon
Catalysts
Chemical Sciences
Chemical vapor deposition
Density
Iron
Nanomaterials
Nanostructure
or physical chemistry
Reactors
Theoretical and
title Dynamics of catalyst particle formation and multi-walled carbon nanotube growth in aerosol-assisted catalytic chemical vapor deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20catalyst%20particle%20formation%20and%20multi-walled%20carbon%20nanotube%20growth%20in%20aerosol-assisted%20catalytic%20chemical%20vapor%20deposition&rft.jtitle=Carbon%20(New%20York)&rft.au=Castro,%20C.&rft.date=2010-11-01&rft.volume=48&rft.issue=13&rft.spage=3807&rft.epage=3816&rft.pages=3807-3816&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2010.06.045&rft_dat=%3Cproquest_hal_p%3E855718913%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855718913&rft_id=info:pmid/&rft_els_id=S0008622310004513&rfr_iscdi=true