The Peregrine soliton in nonlinear fibre optics
The Peregrine soliton — a wave localized in both space and time — is now observed experimentally for the first time by using femtosecond pulses in an optical fibre. The results give some insight into freak waves that can appear out of nowhere before simply disappearing. The Peregrine soliton is a lo...
Gespeichert in:
Veröffentlicht in: | Nature physics 2010-10, Vol.6 (10), p.790-795 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 795 |
---|---|
container_issue | 10 |
container_start_page | 790 |
container_title | Nature physics |
container_volume | 6 |
creator | Kibler, B. Fatome, J. Finot, C. Millot, G. Dias, F. Genty, G. Akhmediev, N. Dudley, J. M. |
description | The Peregrine soliton — a wave localized in both space and time — is now observed experimentally for the first time by using femtosecond pulses in an optical fibre. The results give some insight into freak waves that can appear out of nowhere before simply disappearing.
The Peregrine soliton is a localized nonlinear structure predicted to exist over 25 years ago, but not so far experimentally observed in any physical system
1
. It is of fundamental significance because it is localized in both time and space, and because it defines the limit of a wide class of solutions to the nonlinear Schrödinger equation (NLSE). Here, we use an analytic description of NLSE breather propagation
2
to implement experiments in optical fibre generating femtosecond pulses with strong temporal and spatial localization, and near-ideal temporal Peregrine soliton characteristics. In showing that Peregrine soliton characteristics appear with initial conditions that do not correspond to the mathematical ideal, our results may impact widely on studies of hydrodynamic wave instabilities where the Peregrine soliton is considered a freak-wave prototype
3
,
4
,
5
,
6
,
7
. |
doi_str_mv | 10.1038/nphys1740 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00510987v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>880678012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-47755091784d2c34737734149f029f794950b24b2e96914ad6d8bbf365b427d43</originalsourceid><addsrcrecordid>eNp10UtLAzEQAOAgCtbqwX-w6EEU1ub9OEpRKxT0UM9hH9k2ZZusyVbovzelsoLiaYbhYx4MAJcI3iNI5MR1q11EgsIjMEqB5ZhKdDzkgpyCsxjXEFLMERmByWJlsjcTzDJYZ7LoW9t7l1mXOe_aVCpC1tgymMx3va3iOThpijaai-84Bu9Pj4vpLJ-_Pr9MH-Z5RTnscyoEY1AhIWmNK5LmCkEooqqBWDVCUcVgiWmJjeIK0aLmtSzLhnBWUixqSsbg9tB3VbS6C3ZThJ32hdWzh7ne1yBkCCopPlGyNwfbBf-xNbHXGxsr07aFM34btZSQCwkRTvLql1z7bXDpEC0YZ5wQxhK6_g8RxDDhHKZ7hgWr4GMMphm2RFDvX6GHVyR7d7AxGbc04afjX_wFd42GBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152366047</pqid></control><display><type>article</type><title>The Peregrine soliton in nonlinear fibre optics</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Kibler, B. ; Fatome, J. ; Finot, C. ; Millot, G. ; Dias, F. ; Genty, G. ; Akhmediev, N. ; Dudley, J. M.</creator><creatorcontrib>Kibler, B. ; Fatome, J. ; Finot, C. ; Millot, G. ; Dias, F. ; Genty, G. ; Akhmediev, N. ; Dudley, J. M.</creatorcontrib><description>The Peregrine soliton — a wave localized in both space and time — is now observed experimentally for the first time by using femtosecond pulses in an optical fibre. The results give some insight into freak waves that can appear out of nowhere before simply disappearing.
The Peregrine soliton is a localized nonlinear structure predicted to exist over 25 years ago, but not so far experimentally observed in any physical system
1
. It is of fundamental significance because it is localized in both time and space, and because it defines the limit of a wide class of solutions to the nonlinear Schrödinger equation (NLSE). Here, we use an analytic description of NLSE breather propagation
2
to implement experiments in optical fibre generating femtosecond pulses with strong temporal and spatial localization, and near-ideal temporal Peregrine soliton characteristics. In showing that Peregrine soliton characteristics appear with initial conditions that do not correspond to the mathematical ideal, our results may impact widely on studies of hydrodynamic wave instabilities where the Peregrine soliton is considered a freak-wave prototype
3
,
4
,
5
,
6
,
7
.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>EISSN: 1476-4636</identifier><identifier>DOI: 10.1038/nphys1740</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atomic ; Classical and Continuum Physics ; Complex Systems ; Computational fluid dynamics ; Condensed Matter Physics ; Experiments ; Femtosecond pulses ; Fiber optics ; Initial conditions ; letter ; Mathematical analysis ; Mathematical and Computational Physics ; Molecular ; Nonlinear Sciences ; Nonlinear systems ; Nonlinearity ; Optical and Plasma Physics ; Optical fibers ; Optics ; Pattern Formation and Solitons ; Physics ; Physics and Astronomy ; Prototypes ; Quantum physics ; Schrodinger equation ; Solitary waves ; Solitons ; Temporal logic ; Theoretical</subject><ispartof>Nature physics, 2010-10, Vol.6 (10), p.790-795</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Oct 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-47755091784d2c34737734149f029f794950b24b2e96914ad6d8bbf365b427d43</citedby><cites>FETCH-LOGICAL-c460t-47755091784d2c34737734149f029f794950b24b2e96914ad6d8bbf365b427d43</cites><orcidid>0000-0001-6894-2991 ; 0000-0001-8838-0738 ; 0000-0002-0755-5995 ; 0000-0003-0032-0437 ; 0000-0001-9520-9699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys1740$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys1740$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00510987$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kibler, B.</creatorcontrib><creatorcontrib>Fatome, J.</creatorcontrib><creatorcontrib>Finot, C.</creatorcontrib><creatorcontrib>Millot, G.</creatorcontrib><creatorcontrib>Dias, F.</creatorcontrib><creatorcontrib>Genty, G.</creatorcontrib><creatorcontrib>Akhmediev, N.</creatorcontrib><creatorcontrib>Dudley, J. M.</creatorcontrib><title>The Peregrine soliton in nonlinear fibre optics</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>The Peregrine soliton — a wave localized in both space and time — is now observed experimentally for the first time by using femtosecond pulses in an optical fibre. The results give some insight into freak waves that can appear out of nowhere before simply disappearing.
The Peregrine soliton is a localized nonlinear structure predicted to exist over 25 years ago, but not so far experimentally observed in any physical system
1
. It is of fundamental significance because it is localized in both time and space, and because it defines the limit of a wide class of solutions to the nonlinear Schrödinger equation (NLSE). Here, we use an analytic description of NLSE breather propagation
2
to implement experiments in optical fibre generating femtosecond pulses with strong temporal and spatial localization, and near-ideal temporal Peregrine soliton characteristics. In showing that Peregrine soliton characteristics appear with initial conditions that do not correspond to the mathematical ideal, our results may impact widely on studies of hydrodynamic wave instabilities where the Peregrine soliton is considered a freak-wave prototype
3
,
4
,
5
,
6
,
7
.</description><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Computational fluid dynamics</subject><subject>Condensed Matter Physics</subject><subject>Experiments</subject><subject>Femtosecond pulses</subject><subject>Fiber optics</subject><subject>Initial conditions</subject><subject>letter</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nonlinear Sciences</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Optical and Plasma Physics</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Pattern Formation and Solitons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Prototypes</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><subject>Solitary waves</subject><subject>Solitons</subject><subject>Temporal logic</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><issn>1476-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp10UtLAzEQAOAgCtbqwX-w6EEU1ub9OEpRKxT0UM9hH9k2ZZusyVbovzelsoLiaYbhYx4MAJcI3iNI5MR1q11EgsIjMEqB5ZhKdDzkgpyCsxjXEFLMERmByWJlsjcTzDJYZ7LoW9t7l1mXOe_aVCpC1tgymMx3va3iOThpijaai-84Bu9Pj4vpLJ-_Pr9MH-Z5RTnscyoEY1AhIWmNK5LmCkEooqqBWDVCUcVgiWmJjeIK0aLmtSzLhnBWUixqSsbg9tB3VbS6C3ZThJ32hdWzh7ne1yBkCCopPlGyNwfbBf-xNbHXGxsr07aFM34btZSQCwkRTvLql1z7bXDpEC0YZ5wQxhK6_g8RxDDhHKZ7hgWr4GMMphm2RFDvX6GHVyR7d7AxGbc04afjX_wFd42GBA</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Kibler, B.</creator><creator>Fatome, J.</creator><creator>Finot, C.</creator><creator>Millot, G.</creator><creator>Dias, F.</creator><creator>Genty, G.</creator><creator>Akhmediev, N.</creator><creator>Dudley, J. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group [2005-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6894-2991</orcidid><orcidid>https://orcid.org/0000-0001-8838-0738</orcidid><orcidid>https://orcid.org/0000-0002-0755-5995</orcidid><orcidid>https://orcid.org/0000-0003-0032-0437</orcidid><orcidid>https://orcid.org/0000-0001-9520-9699</orcidid></search><sort><creationdate>20101001</creationdate><title>The Peregrine soliton in nonlinear fibre optics</title><author>Kibler, B. ; Fatome, J. ; Finot, C. ; Millot, G. ; Dias, F. ; Genty, G. ; Akhmediev, N. ; Dudley, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-47755091784d2c34737734149f029f794950b24b2e96914ad6d8bbf365b427d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Computational fluid dynamics</topic><topic>Condensed Matter Physics</topic><topic>Experiments</topic><topic>Femtosecond pulses</topic><topic>Fiber optics</topic><topic>Initial conditions</topic><topic>letter</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nonlinear Sciences</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Optical and Plasma Physics</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Pattern Formation and Solitons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Prototypes</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><topic>Solitary waves</topic><topic>Solitons</topic><topic>Temporal logic</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kibler, B.</creatorcontrib><creatorcontrib>Fatome, J.</creatorcontrib><creatorcontrib>Finot, C.</creatorcontrib><creatorcontrib>Millot, G.</creatorcontrib><creatorcontrib>Dias, F.</creatorcontrib><creatorcontrib>Genty, G.</creatorcontrib><creatorcontrib>Akhmediev, N.</creatorcontrib><creatorcontrib>Dudley, J. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kibler, B.</au><au>Fatome, J.</au><au>Finot, C.</au><au>Millot, G.</au><au>Dias, F.</au><au>Genty, G.</au><au>Akhmediev, N.</au><au>Dudley, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Peregrine soliton in nonlinear fibre optics</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>6</volume><issue>10</issue><spage>790</spage><epage>795</epage><pages>790-795</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><eissn>1476-4636</eissn><abstract>The Peregrine soliton — a wave localized in both space and time — is now observed experimentally for the first time by using femtosecond pulses in an optical fibre. The results give some insight into freak waves that can appear out of nowhere before simply disappearing.
The Peregrine soliton is a localized nonlinear structure predicted to exist over 25 years ago, but not so far experimentally observed in any physical system
1
. It is of fundamental significance because it is localized in both time and space, and because it defines the limit of a wide class of solutions to the nonlinear Schrödinger equation (NLSE). Here, we use an analytic description of NLSE breather propagation
2
to implement experiments in optical fibre generating femtosecond pulses with strong temporal and spatial localization, and near-ideal temporal Peregrine soliton characteristics. In showing that Peregrine soliton characteristics appear with initial conditions that do not correspond to the mathematical ideal, our results may impact widely on studies of hydrodynamic wave instabilities where the Peregrine soliton is considered a freak-wave prototype
3
,
4
,
5
,
6
,
7
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys1740</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6894-2991</orcidid><orcidid>https://orcid.org/0000-0001-8838-0738</orcidid><orcidid>https://orcid.org/0000-0002-0755-5995</orcidid><orcidid>https://orcid.org/0000-0003-0032-0437</orcidid><orcidid>https://orcid.org/0000-0001-9520-9699</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2010-10, Vol.6 (10), p.790-795 |
issn | 1745-2473 1745-2481 1476-4636 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00510987v1 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | Atomic Classical and Continuum Physics Complex Systems Computational fluid dynamics Condensed Matter Physics Experiments Femtosecond pulses Fiber optics Initial conditions letter Mathematical analysis Mathematical and Computational Physics Molecular Nonlinear Sciences Nonlinear systems Nonlinearity Optical and Plasma Physics Optical fibers Optics Pattern Formation and Solitons Physics Physics and Astronomy Prototypes Quantum physics Schrodinger equation Solitary waves Solitons Temporal logic Theoretical |
title | The Peregrine soliton in nonlinear fibre optics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Peregrine%20soliton%20in%20nonlinear%20fibre%20optics&rft.jtitle=Nature%20physics&rft.au=Kibler,%20B.&rft.date=2010-10-01&rft.volume=6&rft.issue=10&rft.spage=790&rft.epage=795&rft.pages=790-795&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys1740&rft_dat=%3Cproquest_hal_p%3E880678012%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152366047&rft_id=info:pmid/&rfr_iscdi=true |