A Kolmogorov inequality for weighted U-statistics
In this paper a Kolmogorov probability inequality for weighted U-statistics based on Bernoulli kernels is presented. This inequality which extends the results of [Turner, D.W., Young, D.M., Seaman, J.W., 1995. A Kolmogorov inequality for the sum of independent Bernoulli random variables with unequal...
Gespeichert in:
Veröffentlicht in: | Statistics & probability letters 2008-12, Vol.78 (18), p.3294-3297 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3297 |
---|---|
container_issue | 18 |
container_start_page | 3294 |
container_title | Statistics & probability letters |
container_volume | 78 |
creator | Mavrikiou, Petroula M. |
description | In this paper a Kolmogorov probability inequality for weighted U-statistics based on Bernoulli kernels is presented. This inequality which extends the results of [Turner, D.W., Young, D.M., Seaman, J.W., 1995. A Kolmogorov inequality for the sum of independent Bernoulli random variables with unequal means. Statist. Probab. Lett. 23, 243–245] is a Hoeffding type exponential inequality without any assumptions or restrictions. |
doi_str_mv | 10.1016/j.spl.2008.06.013 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00508475v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167715208003179</els_id><sourcerecordid>S0167715208003179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-70ed273892b2b3adfbda7695c52413848f5cb13aa39147c25077114557122ffd3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjB7BlYWBIuLPj2hFTVfElilhgtlzHaV2ldbBDUf89LkEdGe5sWe_z-u4l5AqhQMDx7aqIXVtQAFnAuABkR2SEUlQ5RWDHZJQ0IhfI6Sk5i3EFAJRzHBGcZC--XfuFD36buY39_NKt63dZ40P2bd1i2ds6-8hjr3sXe2fiBTlpdBvt5d95Tj4e7t-nT_ns7fF5OpnlphRlnwuwNRVMVnRO50zXzbzWYlxxw2mJTJay4WaOTGtWYSkM5SAEYsm5QEqbpmbn5GbwXepWdcGtddgpr516mszU_g2AgywF32LS4qA1wccYbHMAENQ-H7VSKR-1z0fBWKV8EvM6MMF21hwAa23atQtebRXTQqa2S_VLsvQ707i_dKkYrUqVmlDLfp38rge_Tkej2ybojXHx4EtBVkxSmnR3g86m8LbOBhWNsxtjaxes6VXt3T9T_wAfspJV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Kolmogorov inequality for weighted U-statistics</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Mavrikiou, Petroula M.</creator><creatorcontrib>Mavrikiou, Petroula M.</creatorcontrib><description>In this paper a Kolmogorov probability inequality for weighted U-statistics based on Bernoulli kernels is presented. This inequality which extends the results of [Turner, D.W., Young, D.M., Seaman, J.W., 1995. A Kolmogorov inequality for the sum of independent Bernoulli random variables with unequal means. Statist. Probab. Lett. 23, 243–245] is a Hoeffding type exponential inequality without any assumptions or restrictions.</description><identifier>ISSN: 0167-7152</identifier><identifier>EISSN: 1879-2103</identifier><identifier>DOI: 10.1016/j.spl.2008.06.013</identifier><identifier>CODEN: SPLTDC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; General topics ; Mathematics ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistics ; Stochastic processes</subject><ispartof>Statistics & probability letters, 2008-12, Vol.78 (18), p.3294-3297</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-70ed273892b2b3adfbda7695c52413848f5cb13aa39147c25077114557122ffd3</citedby><cites>FETCH-LOGICAL-c474t-70ed273892b2b3adfbda7695c52413848f5cb13aa39147c25077114557122ffd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.spl.2008.06.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,3994,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20893822$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeestapro/v_3a78_3ay_3a2008_3ai_3a18_3ap_3a3294-3297.htm$$DView record in RePEc$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00508475$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mavrikiou, Petroula M.</creatorcontrib><title>A Kolmogorov inequality for weighted U-statistics</title><title>Statistics & probability letters</title><description>In this paper a Kolmogorov probability inequality for weighted U-statistics based on Bernoulli kernels is presented. This inequality which extends the results of [Turner, D.W., Young, D.M., Seaman, J.W., 1995. A Kolmogorov inequality for the sum of independent Bernoulli random variables with unequal means. Statist. Probab. Lett. 23, 243–245] is a Hoeffding type exponential inequality without any assumptions or restrictions.</description><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic processes</subject><issn>0167-7152</issn><issn>1879-2103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kD1PwzAQhi0EEuXjB7BlYWBIuLPj2hFTVfElilhgtlzHaV2ldbBDUf89LkEdGe5sWe_z-u4l5AqhQMDx7aqIXVtQAFnAuABkR2SEUlQ5RWDHZJQ0IhfI6Sk5i3EFAJRzHBGcZC--XfuFD36buY39_NKt63dZ40P2bd1i2ds6-8hjr3sXe2fiBTlpdBvt5d95Tj4e7t-nT_ns7fF5OpnlphRlnwuwNRVMVnRO50zXzbzWYlxxw2mJTJay4WaOTGtWYSkM5SAEYsm5QEqbpmbn5GbwXepWdcGtddgpr516mszU_g2AgywF32LS4qA1wccYbHMAENQ-H7VSKR-1z0fBWKV8EvM6MMF21hwAa23atQtebRXTQqa2S_VLsvQ707i_dKkYrUqVmlDLfp38rge_Tkej2ybojXHx4EtBVkxSmnR3g86m8LbOBhWNsxtjaxes6VXt3T9T_wAfspJV</recordid><startdate>20081215</startdate><enddate>20081215</enddate><creator>Mavrikiou, Petroula M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20081215</creationdate><title>A Kolmogorov inequality for weighted U-statistics</title><author>Mavrikiou, Petroula M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-70ed273892b2b3adfbda7695c52413848f5cb13aa39147c25077114557122ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mavrikiou, Petroula M.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Statistics & probability letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mavrikiou, Petroula M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Kolmogorov inequality for weighted U-statistics</atitle><jtitle>Statistics & probability letters</jtitle><date>2008-12-15</date><risdate>2008</risdate><volume>78</volume><issue>18</issue><spage>3294</spage><epage>3297</epage><pages>3294-3297</pages><issn>0167-7152</issn><eissn>1879-2103</eissn><coden>SPLTDC</coden><abstract>In this paper a Kolmogorov probability inequality for weighted U-statistics based on Bernoulli kernels is presented. This inequality which extends the results of [Turner, D.W., Young, D.M., Seaman, J.W., 1995. A Kolmogorov inequality for the sum of independent Bernoulli random variables with unequal means. Statist. Probab. Lett. 23, 243–245] is a Hoeffding type exponential inequality without any assumptions or restrictions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.spl.2008.06.013</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7152 |
ispartof | Statistics & probability letters, 2008-12, Vol.78 (18), p.3294-3297 |
issn | 0167-7152 1879-2103 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00508475v1 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Exact sciences and technology General topics Mathematics Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Statistics Stochastic processes |
title | A Kolmogorov inequality for weighted U-statistics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Kolmogorov%20inequality%20for%20weighted%20U-statistics&rft.jtitle=Statistics%20&%20probability%20letters&rft.au=Mavrikiou,%20Petroula%20M.&rft.date=2008-12-15&rft.volume=78&rft.issue=18&rft.spage=3294&rft.epage=3297&rft.pages=3294-3297&rft.issn=0167-7152&rft.eissn=1879-2103&rft.coden=SPLTDC&rft_id=info:doi/10.1016/j.spl.2008.06.013&rft_dat=%3Celsevier_hal_p%3ES0167715208003179%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167715208003179&rfr_iscdi=true |