Mechanical properties of alumina–zirconia–Nb micro–nano-hybrid composites

The multi-scale and multi-phase hybrid composite ceramic–metal materials Al 2O 3– nZrO 2–Nb are successfully fabricated. Their mechanical properties are better compared to the single-phase alumina materials and conventional alumina–Nb composite materials. The coexist function of nano-scale ZrO 2, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2008-05, Vol.68 (6), p.1392-1398
Hauptverfasser: Bartolomé, José F., Gutiérrez-González, C.F., Torrecillas, Ramón
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1398
container_issue 6
container_start_page 1392
container_title Composites science and technology
container_volume 68
creator Bartolomé, José F.
Gutiérrez-González, C.F.
Torrecillas, Ramón
description The multi-scale and multi-phase hybrid composite ceramic–metal materials Al 2O 3– nZrO 2–Nb are successfully fabricated. Their mechanical properties are better compared to the single-phase alumina materials and conventional alumina–Nb composite materials. The coexist function of nano-scale ZrO 2, which can increase the initial toughness and strength, and the micrometer lamellar Nb particles which increase the toughness, flaw tolerance and crack growth resistance, improve notably the mechanical properties of these hybrid composites. The mechanisms of toughening and strengthening were analyzed, and it was found that residual stress, generated by the different thermal coefficients between the Al 2O 3 matrix and the ZrO 2 nanoparticles, and bridging of the Nb inclusions were the two main factors that can increase the initial level of the driving force for critical microcrack extension, and shield an advancing crack and exert crack closure stresses on the crack wake. The aim of this work is to develop mechanisms at a multiple of length scales in order to create a new hybrid material with unique mechanical properties.
doi_str_mv 10.1016/j.compscitech.2007.11.010
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00499004v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353807004654</els_id><sourcerecordid>32421184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-bd169670c0a265a27e58bd1e74bfc50d72c5d0f81529408e341219bb36c3e87f3</originalsourceid><addsrcrecordid>eNqNkM9q3DAQxkVoIds07-AcEujBzoz8R_YxLG1T2DSX5ixkecxqsa2N5A2kp7xD3rBP0jEbQo-9SMPwm2_m-4S4QMgQsLreZdaP-2jdTHabSQCVIWaAcCJWWKsmRSjhg1iBrKo0L_P6VHyKcQcMlo1cifs7njOTs2ZI9sHvKcyOYuL7xAyH0U3mz8vrbxesn9xS_myT0dnguZzM5NPtcxtclyw3-Mg3xM_iY2-GSOdv_5l4-Pb11_o23dx__7G-2aS2qNScth1WTaXAgpFVaaSisuYeqaLtbQmdkrbsoK-xlE0BNeUFSmzaNq9sTrXq8zPx5ai7NYPeBzea8Ky9cfr2ZqOXHkDRNPw8IbNXR5YNPh4oznp00dIwmIn8IepcFhKxLhhsjiA7jDFQ_66MoJe49U7_E7de4taImuPm2cu3JSZymH0wk3XxXUCClOxXMbc-csTpPDkKmtVostS5QHbWnXf_se0v9euelA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>32421184</pqid></control><display><type>article</type><title>Mechanical properties of alumina–zirconia–Nb micro–nano-hybrid composites</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bartolomé, José F. ; Gutiérrez-González, C.F. ; Torrecillas, Ramón</creator><creatorcontrib>Bartolomé, José F. ; Gutiérrez-González, C.F. ; Torrecillas, Ramón</creatorcontrib><description>The multi-scale and multi-phase hybrid composite ceramic–metal materials Al 2O 3– nZrO 2–Nb are successfully fabricated. Their mechanical properties are better compared to the single-phase alumina materials and conventional alumina–Nb composite materials. The coexist function of nano-scale ZrO 2, which can increase the initial toughness and strength, and the micrometer lamellar Nb particles which increase the toughness, flaw tolerance and crack growth resistance, improve notably the mechanical properties of these hybrid composites. The mechanisms of toughening and strengthening were analyzed, and it was found that residual stress, generated by the different thermal coefficients between the Al 2O 3 matrix and the ZrO 2 nanoparticles, and bridging of the Nb inclusions were the two main factors that can increase the initial level of the driving force for critical microcrack extension, and shield an advancing crack and exert crack closure stresses on the crack wake. The aim of this work is to develop mechanisms at a multiple of length scales in order to create a new hybrid material with unique mechanical properties.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2007.11.010</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A. Ceramic-matrix composites ; Applied sciences ; B. Microstructure ; B. Toughness ; Building materials. Ceramics. Glasses ; Ceramic industries ; Cermets ; Cermets, ceramic and refractory composites ; Chemical industry and chemicals ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Other materials ; Physics ; Specific materials ; Structural ceramics ; Technical ceramics</subject><ispartof>Composites science and technology, 2008-05, Vol.68 (6), p.1392-1398</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-bd169670c0a265a27e58bd1e74bfc50d72c5d0f81529408e341219bb36c3e87f3</citedby><cites>FETCH-LOGICAL-c467t-bd169670c0a265a27e58bd1e74bfc50d72c5d0f81529408e341219bb36c3e87f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266353807004654$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20226707$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00499004$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartolomé, José F.</creatorcontrib><creatorcontrib>Gutiérrez-González, C.F.</creatorcontrib><creatorcontrib>Torrecillas, Ramón</creatorcontrib><title>Mechanical properties of alumina–zirconia–Nb micro–nano-hybrid composites</title><title>Composites science and technology</title><description>The multi-scale and multi-phase hybrid composite ceramic–metal materials Al 2O 3– nZrO 2–Nb are successfully fabricated. Their mechanical properties are better compared to the single-phase alumina materials and conventional alumina–Nb composite materials. The coexist function of nano-scale ZrO 2, which can increase the initial toughness and strength, and the micrometer lamellar Nb particles which increase the toughness, flaw tolerance and crack growth resistance, improve notably the mechanical properties of these hybrid composites. The mechanisms of toughening and strengthening were analyzed, and it was found that residual stress, generated by the different thermal coefficients between the Al 2O 3 matrix and the ZrO 2 nanoparticles, and bridging of the Nb inclusions were the two main factors that can increase the initial level of the driving force for critical microcrack extension, and shield an advancing crack and exert crack closure stresses on the crack wake. The aim of this work is to develop mechanisms at a multiple of length scales in order to create a new hybrid material with unique mechanical properties.</description><subject>A. Ceramic-matrix composites</subject><subject>Applied sciences</subject><subject>B. Microstructure</subject><subject>B. Toughness</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Cermets</subject><subject>Cermets, ceramic and refractory composites</subject><subject>Chemical industry and chemicals</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Other materials</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Structural ceramics</subject><subject>Technical ceramics</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkM9q3DAQxkVoIds07-AcEujBzoz8R_YxLG1T2DSX5ixkecxqsa2N5A2kp7xD3rBP0jEbQo-9SMPwm2_m-4S4QMgQsLreZdaP-2jdTHabSQCVIWaAcCJWWKsmRSjhg1iBrKo0L_P6VHyKcQcMlo1cifs7njOTs2ZI9sHvKcyOYuL7xAyH0U3mz8vrbxesn9xS_myT0dnguZzM5NPtcxtclyw3-Mg3xM_iY2-GSOdv_5l4-Pb11_o23dx__7G-2aS2qNScth1WTaXAgpFVaaSisuYeqaLtbQmdkrbsoK-xlE0BNeUFSmzaNq9sTrXq8zPx5ai7NYPeBzea8Ky9cfr2ZqOXHkDRNPw8IbNXR5YNPh4oznp00dIwmIn8IepcFhKxLhhsjiA7jDFQ_66MoJe49U7_E7de4taImuPm2cu3JSZymH0wk3XxXUCClOxXMbc-csTpPDkKmtVostS5QHbWnXf_se0v9euelA</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Bartolomé, José F.</creator><creator>Gutiérrez-González, C.F.</creator><creator>Torrecillas, Ramón</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20080501</creationdate><title>Mechanical properties of alumina–zirconia–Nb micro–nano-hybrid composites</title><author>Bartolomé, José F. ; Gutiérrez-González, C.F. ; Torrecillas, Ramón</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-bd169670c0a265a27e58bd1e74bfc50d72c5d0f81529408e341219bb36c3e87f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>A. Ceramic-matrix composites</topic><topic>Applied sciences</topic><topic>B. Microstructure</topic><topic>B. Toughness</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Cermets</topic><topic>Cermets, ceramic and refractory composites</topic><topic>Chemical industry and chemicals</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Other materials</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Structural ceramics</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartolomé, José F.</creatorcontrib><creatorcontrib>Gutiérrez-González, C.F.</creatorcontrib><creatorcontrib>Torrecillas, Ramón</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartolomé, José F.</au><au>Gutiérrez-González, C.F.</au><au>Torrecillas, Ramón</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of alumina–zirconia–Nb micro–nano-hybrid composites</atitle><jtitle>Composites science and technology</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>68</volume><issue>6</issue><spage>1392</spage><epage>1398</epage><pages>1392-1398</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>The multi-scale and multi-phase hybrid composite ceramic–metal materials Al 2O 3– nZrO 2–Nb are successfully fabricated. Their mechanical properties are better compared to the single-phase alumina materials and conventional alumina–Nb composite materials. The coexist function of nano-scale ZrO 2, which can increase the initial toughness and strength, and the micrometer lamellar Nb particles which increase the toughness, flaw tolerance and crack growth resistance, improve notably the mechanical properties of these hybrid composites. The mechanisms of toughening and strengthening were analyzed, and it was found that residual stress, generated by the different thermal coefficients between the Al 2O 3 matrix and the ZrO 2 nanoparticles, and bridging of the Nb inclusions were the two main factors that can increase the initial level of the driving force for critical microcrack extension, and shield an advancing crack and exert crack closure stresses on the crack wake. The aim of this work is to develop mechanisms at a multiple of length scales in order to create a new hybrid material with unique mechanical properties.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2007.11.010</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2008-05, Vol.68 (6), p.1392-1398
issn 0266-3538
1879-1050
language eng
recordid cdi_hal_primary_oai_HAL_hal_00499004v1
source Elsevier ScienceDirect Journals Complete
subjects A. Ceramic-matrix composites
Applied sciences
B. Microstructure
B. Toughness
Building materials. Ceramics. Glasses
Ceramic industries
Cermets
Cermets, ceramic and refractory composites
Chemical industry and chemicals
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Other materials
Physics
Specific materials
Structural ceramics
Technical ceramics
title Mechanical properties of alumina–zirconia–Nb micro–nano-hybrid composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20alumina%E2%80%93zirconia%E2%80%93Nb%20micro%E2%80%93nano-hybrid%20composites&rft.jtitle=Composites%20science%20and%20technology&rft.au=Bartolom%C3%A9,%20Jos%C3%A9%20F.&rft.date=2008-05-01&rft.volume=68&rft.issue=6&rft.spage=1392&rft.epage=1398&rft.pages=1392-1398&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/j.compscitech.2007.11.010&rft_dat=%3Cproquest_hal_p%3E32421184%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=32421184&rft_id=info:pmid/&rft_els_id=S0266353807004654&rfr_iscdi=true