Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer
Time‐lapse microgravity surveying combined with absolute gravity measurements is used to investigate water storage changes in a karst aquifer of ∼100 km2 area. The survey consists of 40 gravity stations measured with a relative gravimeter; absolute gravity is measured at three stations for each surv...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research 2010-06, Vol.115 (B6), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | B6 |
container_start_page | |
container_title | Journal of Geophysical Research |
container_volume | 115 |
creator | Jacob, Thomas Bayer, Roger Chery, Jean Le Moigne, Nicolas |
description | Time‐lapse microgravity surveying combined with absolute gravity measurements is used to investigate water storage changes in a karst aquifer of ∼100 km2 area. The survey consists of 40 gravity stations measured with a relative gravimeter; absolute gravity is measured at three stations for each survey. In total, four gravity surveys are performed over a 2 year time period during consecutive wet and dry periods. Survey precisions range between 2.4 and 5 μGal, enabling statistically significant detection of 10 μGal change, i.e., ∼0.25 m equivalent water level change. Observed gravity changes are coherent between consecutive survey periods, i.e., net water withdrawal and net water recharge is observed, reaching changes as high as 22 μGal. Observed gravity changes allow refining evapotranspiration estimates, which may serve to improve the water budget of the aquifer. High‐and low‐gravity amplitude zones characterize the karst system, demonstrating spatially variable storage behavior. Geomorphologic considerations are invoked to explain the location of preferential zones of water storage, and a conceptual model of water storage is discussed for the studied karst. |
doi_str_mv | 10.1029/2009JB006616 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00496400v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315341691</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5013-cee5b9e7190330f88a0e1d8dc7891caef773f7c7f9ee866775694e8f10c228503</originalsourceid><addsrcrecordid>eNp9kVtvEzEQhVcIJKLSN36AhYQQEgtjO749Ni2kVBE3teLRGrbj1O0mm9q7Kfn3ONoqQjwwL9ZY3zmjM1NVLzm85yDcBwHgLmYAWnP9pJoIrnQtBIin1QT41NYghHleHed8C6WmSk-BT6qry7iiusVNJraKTeqWCbex37E8pC3tMku0JWzZA_aUWO67hEtiN1S6bklr2qNdYMjuMOWe4f0QA6UX1bOAbabjx_eouvr08fL0vF58nX8-PVnUqIDLuiFSvxwZ7kBKCNYiEL-2142xjjdIwRgZTGOCI7JaG6O0m5INHBohrAJ5VL0dfW-w9ZsUV5h2vsPoz08Wfv9XgroSFLa8sG9GdpO6-4Fy71cxN9S2uKZuyN6oshPhtC3kq3_I225I6xLEW83BKWd1gd6NUNlZzonCYT4Hvz-I__sgBX_96Im5wTYkXDcxHzRCglYOROHkyD3Elnb_9fQX8x8zroWSRVWPqph7-n1QYbrz2kij_M8vc__dzqz-tpj5M_kHXfOmfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861095986</pqid></control><display><type>article</type><title>Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Jacob, Thomas ; Bayer, Roger ; Chery, Jean ; Le Moigne, Nicolas</creator><creatorcontrib>Jacob, Thomas ; Bayer, Roger ; Chery, Jean ; Le Moigne, Nicolas</creatorcontrib><description>Time‐lapse microgravity surveying combined with absolute gravity measurements is used to investigate water storage changes in a karst aquifer of ∼100 km2 area. The survey consists of 40 gravity stations measured with a relative gravimeter; absolute gravity is measured at three stations for each survey. In total, four gravity surveys are performed over a 2 year time period during consecutive wet and dry periods. Survey precisions range between 2.4 and 5 μGal, enabling statistically significant detection of 10 μGal change, i.e., ∼0.25 m equivalent water level change. Observed gravity changes are coherent between consecutive survey periods, i.e., net water withdrawal and net water recharge is observed, reaching changes as high as 22 μGal. Observed gravity changes allow refining evapotranspiration estimates, which may serve to improve the water budget of the aquifer. High‐and low‐gravity amplitude zones characterize the karst system, demonstrating spatially variable storage behavior. Geomorphologic considerations are invoked to explain the location of preferential zones of water storage, and a conceptual model of water storage is discussed for the studied karst.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2009JB006616</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>absolute gravity ; Aquifers ; Budgets ; Cryosphere ; Earth Sciences ; Earth, ocean, space ; Environmental Sciences ; Evapotranspiration ; Exact sciences and technology ; Geodetics ; Geophysics ; Global Changes ; Gravity ; Heterogeneity ; Hydrology ; Karst ; microgravity ; Ocean-atmosphere interaction ; Physics ; Polls & surveys ; Sciences of the Universe ; Water ; Water budget ; Water levels ; Water storage</subject><ispartof>Journal of Geophysical Research, 2010-06, Vol.115 (B6), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 by American Geophysical Union</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5013-cee5b9e7190330f88a0e1d8dc7891caef773f7c7f9ee866775694e8f10c228503</citedby><cites>FETCH-LOGICAL-a5013-cee5b9e7190330f88a0e1d8dc7891caef773f7c7f9ee866775694e8f10c228503</cites><orcidid>0000-0001-9819-5165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009JB006616$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009JB006616$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,1428,11495,27905,27906,45555,45556,46390,46449,46814,46873</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23065902$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00496400$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacob, Thomas</creatorcontrib><creatorcontrib>Bayer, Roger</creatorcontrib><creatorcontrib>Chery, Jean</creatorcontrib><creatorcontrib>Le Moigne, Nicolas</creatorcontrib><title>Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>Time‐lapse microgravity surveying combined with absolute gravity measurements is used to investigate water storage changes in a karst aquifer of ∼100 km2 area. The survey consists of 40 gravity stations measured with a relative gravimeter; absolute gravity is measured at three stations for each survey. In total, four gravity surveys are performed over a 2 year time period during consecutive wet and dry periods. Survey precisions range between 2.4 and 5 μGal, enabling statistically significant detection of 10 μGal change, i.e., ∼0.25 m equivalent water level change. Observed gravity changes are coherent between consecutive survey periods, i.e., net water withdrawal and net water recharge is observed, reaching changes as high as 22 μGal. Observed gravity changes allow refining evapotranspiration estimates, which may serve to improve the water budget of the aquifer. High‐and low‐gravity amplitude zones characterize the karst system, demonstrating spatially variable storage behavior. Geomorphologic considerations are invoked to explain the location of preferential zones of water storage, and a conceptual model of water storage is discussed for the studied karst.</description><subject>absolute gravity</subject><subject>Aquifers</subject><subject>Budgets</subject><subject>Cryosphere</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Environmental Sciences</subject><subject>Evapotranspiration</subject><subject>Exact sciences and technology</subject><subject>Geodetics</subject><subject>Geophysics</subject><subject>Global Changes</subject><subject>Gravity</subject><subject>Heterogeneity</subject><subject>Hydrology</subject><subject>Karst</subject><subject>microgravity</subject><subject>Ocean-atmosphere interaction</subject><subject>Physics</subject><subject>Polls & surveys</subject><subject>Sciences of the Universe</subject><subject>Water</subject><subject>Water budget</subject><subject>Water levels</subject><subject>Water storage</subject><issn>0148-0227</issn><issn>2169-9313</issn><issn>2156-2202</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kVtvEzEQhVcIJKLSN36AhYQQEgtjO749Ni2kVBE3teLRGrbj1O0mm9q7Kfn3ONoqQjwwL9ZY3zmjM1NVLzm85yDcBwHgLmYAWnP9pJoIrnQtBIin1QT41NYghHleHed8C6WmSk-BT6qry7iiusVNJraKTeqWCbex37E8pC3tMku0JWzZA_aUWO67hEtiN1S6bklr2qNdYMjuMOWe4f0QA6UX1bOAbabjx_eouvr08fL0vF58nX8-PVnUqIDLuiFSvxwZ7kBKCNYiEL-2142xjjdIwRgZTGOCI7JaG6O0m5INHBohrAJ5VL0dfW-w9ZsUV5h2vsPoz08Wfv9XgroSFLa8sG9GdpO6-4Fy71cxN9S2uKZuyN6oshPhtC3kq3_I225I6xLEW83BKWd1gd6NUNlZzonCYT4Hvz-I__sgBX_96Im5wTYkXDcxHzRCglYOROHkyD3Elnb_9fQX8x8zroWSRVWPqph7-n1QYbrz2kij_M8vc__dzqz-tpj5M_kHXfOmfw</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Jacob, Thomas</creator><creator>Bayer, Roger</creator><creator>Chery, Jean</creator><creator>Le Moigne, Nicolas</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7UA</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9819-5165</orcidid></search><sort><creationdate>201006</creationdate><title>Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer</title><author>Jacob, Thomas ; Bayer, Roger ; Chery, Jean ; Le Moigne, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5013-cee5b9e7190330f88a0e1d8dc7891caef773f7c7f9ee866775694e8f10c228503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>absolute gravity</topic><topic>Aquifers</topic><topic>Budgets</topic><topic>Cryosphere</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Environmental Sciences</topic><topic>Evapotranspiration</topic><topic>Exact sciences and technology</topic><topic>Geodetics</topic><topic>Geophysics</topic><topic>Global Changes</topic><topic>Gravity</topic><topic>Heterogeneity</topic><topic>Hydrology</topic><topic>Karst</topic><topic>microgravity</topic><topic>Ocean-atmosphere interaction</topic><topic>Physics</topic><topic>Polls & surveys</topic><topic>Sciences of the Universe</topic><topic>Water</topic><topic>Water budget</topic><topic>Water levels</topic><topic>Water storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacob, Thomas</creatorcontrib><creatorcontrib>Bayer, Roger</creatorcontrib><creatorcontrib>Chery, Jean</creatorcontrib><creatorcontrib>Le Moigne, Nicolas</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacob, Thomas</au><au>Bayer, Roger</au><au>Chery, Jean</au><au>Le Moigne, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2010-06</date><risdate>2010</risdate><volume>115</volume><issue>B6</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9313</issn><eissn>2156-2202</eissn><eissn>2169-9356</eissn><abstract>Time‐lapse microgravity surveying combined with absolute gravity measurements is used to investigate water storage changes in a karst aquifer of ∼100 km2 area. The survey consists of 40 gravity stations measured with a relative gravimeter; absolute gravity is measured at three stations for each survey. In total, four gravity surveys are performed over a 2 year time period during consecutive wet and dry periods. Survey precisions range between 2.4 and 5 μGal, enabling statistically significant detection of 10 μGal change, i.e., ∼0.25 m equivalent water level change. Observed gravity changes are coherent between consecutive survey periods, i.e., net water withdrawal and net water recharge is observed, reaching changes as high as 22 μGal. Observed gravity changes allow refining evapotranspiration estimates, which may serve to improve the water budget of the aquifer. High‐and low‐gravity amplitude zones characterize the karst system, demonstrating spatially variable storage behavior. Geomorphologic considerations are invoked to explain the location of preferential zones of water storage, and a conceptual model of water storage is discussed for the studied karst.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009JB006616</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9819-5165</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research, 2010-06, Vol.115 (B6), p.n/a |
issn | 0148-0227 2169-9313 2156-2202 2169-9356 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00496400v1 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection |
subjects | absolute gravity Aquifers Budgets Cryosphere Earth Sciences Earth, ocean, space Environmental Sciences Evapotranspiration Exact sciences and technology Geodetics Geophysics Global Changes Gravity Heterogeneity Hydrology Karst microgravity Ocean-atmosphere interaction Physics Polls & surveys Sciences of the Universe Water Water budget Water levels Water storage |
title | Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T02%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-lapse%20microgravity%20surveys%20reveal%20water%20storage%20heterogeneity%20of%20a%20karst%20aquifer&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Jacob,%20Thomas&rft.date=2010-06&rft.volume=115&rft.issue=B6&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2009JB006616&rft_dat=%3Cproquest_hal_p%3E2315341691%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861095986&rft_id=info:pmid/&rfr_iscdi=true |