CloudSat as a Global Radar Calibrator

The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Atmospheric and Oceanic Technology, 28(3):445-452 28(3):445-452, 2011-03, Vol.28 (3), p.445-452
Hauptverfasser: Protat, A., Bouniol, D., O’Connor, E. J., Klein Baltink, H., Verlinde, J., Widener, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 452
container_issue 3
container_start_page 445
container_title Journal of Atmospheric and Oceanic Technology, 28(3):445-452
container_volume 28
creator Protat, A.
Bouniol, D.
O’Connor, E. J.
Klein Baltink, H.
Verlinde, J.
Widener, K.
description The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5–1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and/or to detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a global radar calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the Radar System Airborne (RASTA) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses resulting from the change in configuration that required verification of the RASTA calibration.
doi_str_mv 10.1175/2010JTECHA1443.1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00493275v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2323960901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d2729c0dcd25e9ca0b153ef3c72be257a22a3bdbfe06390db4035b97b725cd883</originalsourceid><addsrcrecordid>eNp1kc1LAzEUxIMoWKt3j4viwcPWl5fNZnMsS22VgqD1HPJVumVtarIV_O_dUlE8eHow_JiZxxBySWFEqeB3CBQeF5N6NqZFwUb0iAwoR8ihwPKYDEAwmQMXeErOUloDAGW0HJCbug0796K7TKdMZ9M2GN1mz9rpmNW6bUzUXYjn5GSp2-Qvvu-QvN5PFvUsnz9NH-rxPLdFKbrcoUBpwVmH3EurwVDO_JJZgcYjFxpRM-PM0kPJJDhTAONGCiOQW1dVbEiuDr4hdY1Ktum8Xdmw2XjbKQoUsRI9dHuAVrpV29i86fipgm7UbDxXew2gkAwF_6C_htsY3nc-dWoddnHT_6CqEnkhJWc9dP0fhBWWSFnV9x0SOFA2hpSiX_5kU1D7CdTfCRRlX0cQdJc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826213806</pqid></control><display><type>article</type><title>CloudSat as a Global Radar Calibrator</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Protat, A. ; Bouniol, D. ; O’Connor, E. J. ; Klein Baltink, H. ; Verlinde, J. ; Widener, K.</creator><creatorcontrib>Protat, A. ; Bouniol, D. ; O’Connor, E. J. ; Klein Baltink, H. ; Verlinde, J. ; Widener, K. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5–1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and/or to detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a global radar calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the Radar System Airborne (RASTA) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses resulting from the change in configuration that required verification of the RASTA calibration.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/2010JTECHA1443.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Agreements ; Airborne radar ; AIRCRAFT ; ALASKA ; Anomalies ; Atmospheric radiation ; Atmospheric radiation measurements ; Backscatter ; CALIBRATION ; Climatology ; cloud ; CLOUDS ; CloudSat ; CONFIGURATION ; Data processing ; Doppler sonar ; Downward long wave radiation ; Earth Sciences ; ENVIRONMENTAL SCIENCES ; Global Changes ; Meteorology ; NETHERLANDS ; Ocean surface ; Ocean, Atmosphere ; RADAR ; Radar data ; Radar equipment ; Radar measurement ; Radiation measurement ; Radiation-cloud interactions ; RADIATIONS ; Rainfall measurement ; satellite ; Sciences of the Universe ; Statistics ; VERIFICATION</subject><ispartof>Journal of Atmospheric and Oceanic Technology, 28(3):445-452, 2011-03, Vol.28 (3), p.445-452</ispartof><rights>Copyright American Meteorological Society 2011</rights><rights>Copyright American Meteorological Society Mar 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d2729c0dcd25e9ca0b153ef3c72be257a22a3bdbfe06390db4035b97b725cd883</citedby><cites>FETCH-LOGICAL-c467t-d2729c0dcd25e9ca0b153ef3c72be257a22a3bdbfe06390db4035b97b725cd883</cites><orcidid>0000-0002-8933-874X ; 0000-0001-9020-1719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3681,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00493275$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1012287$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Protat, A.</creatorcontrib><creatorcontrib>Bouniol, D.</creatorcontrib><creatorcontrib>O’Connor, E. J.</creatorcontrib><creatorcontrib>Klein Baltink, H.</creatorcontrib><creatorcontrib>Verlinde, J.</creatorcontrib><creatorcontrib>Widener, K.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>CloudSat as a Global Radar Calibrator</title><title>Journal of Atmospheric and Oceanic Technology, 28(3):445-452</title><description>The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5–1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and/or to detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a global radar calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the Radar System Airborne (RASTA) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses resulting from the change in configuration that required verification of the RASTA calibration.</description><subject>Agreements</subject><subject>Airborne radar</subject><subject>AIRCRAFT</subject><subject>ALASKA</subject><subject>Anomalies</subject><subject>Atmospheric radiation</subject><subject>Atmospheric radiation measurements</subject><subject>Backscatter</subject><subject>CALIBRATION</subject><subject>Climatology</subject><subject>cloud</subject><subject>CLOUDS</subject><subject>CloudSat</subject><subject>CONFIGURATION</subject><subject>Data processing</subject><subject>Doppler sonar</subject><subject>Downward long wave radiation</subject><subject>Earth Sciences</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Global Changes</subject><subject>Meteorology</subject><subject>NETHERLANDS</subject><subject>Ocean surface</subject><subject>Ocean, Atmosphere</subject><subject>RADAR</subject><subject>Radar data</subject><subject>Radar equipment</subject><subject>Radar measurement</subject><subject>Radiation measurement</subject><subject>Radiation-cloud interactions</subject><subject>RADIATIONS</subject><subject>Rainfall measurement</subject><subject>satellite</subject><subject>Sciences of the Universe</subject><subject>Statistics</subject><subject>VERIFICATION</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1LAzEUxIMoWKt3j4viwcPWl5fNZnMsS22VgqD1HPJVumVtarIV_O_dUlE8eHow_JiZxxBySWFEqeB3CBQeF5N6NqZFwUb0iAwoR8ihwPKYDEAwmQMXeErOUloDAGW0HJCbug0796K7TKdMZ9M2GN1mz9rpmNW6bUzUXYjn5GSp2-Qvvu-QvN5PFvUsnz9NH-rxPLdFKbrcoUBpwVmH3EurwVDO_JJZgcYjFxpRM-PM0kPJJDhTAONGCiOQW1dVbEiuDr4hdY1Ktum8Xdmw2XjbKQoUsRI9dHuAVrpV29i86fipgm7UbDxXew2gkAwF_6C_htsY3nc-dWoddnHT_6CqEnkhJWc9dP0fhBWWSFnV9x0SOFA2hpSiX_5kU1D7CdTfCRRlX0cQdJc</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Protat, A.</creator><creator>Bouniol, D.</creator><creator>O’Connor, E. J.</creator><creator>Klein Baltink, H.</creator><creator>Verlinde, J.</creator><creator>Widener, K.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8933-874X</orcidid><orcidid>https://orcid.org/0000-0001-9020-1719</orcidid></search><sort><creationdate>20110301</creationdate><title>CloudSat as a Global Radar Calibrator</title><author>Protat, A. ; Bouniol, D. ; O’Connor, E. J. ; Klein Baltink, H. ; Verlinde, J. ; Widener, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d2729c0dcd25e9ca0b153ef3c72be257a22a3bdbfe06390db4035b97b725cd883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agreements</topic><topic>Airborne radar</topic><topic>AIRCRAFT</topic><topic>ALASKA</topic><topic>Anomalies</topic><topic>Atmospheric radiation</topic><topic>Atmospheric radiation measurements</topic><topic>Backscatter</topic><topic>CALIBRATION</topic><topic>Climatology</topic><topic>cloud</topic><topic>CLOUDS</topic><topic>CloudSat</topic><topic>CONFIGURATION</topic><topic>Data processing</topic><topic>Doppler sonar</topic><topic>Downward long wave radiation</topic><topic>Earth Sciences</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Global Changes</topic><topic>Meteorology</topic><topic>NETHERLANDS</topic><topic>Ocean surface</topic><topic>Ocean, Atmosphere</topic><topic>RADAR</topic><topic>Radar data</topic><topic>Radar equipment</topic><topic>Radar measurement</topic><topic>Radiation measurement</topic><topic>Radiation-cloud interactions</topic><topic>RADIATIONS</topic><topic>Rainfall measurement</topic><topic>satellite</topic><topic>Sciences of the Universe</topic><topic>Statistics</topic><topic>VERIFICATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Protat, A.</creatorcontrib><creatorcontrib>Bouniol, D.</creatorcontrib><creatorcontrib>O’Connor, E. J.</creatorcontrib><creatorcontrib>Klein Baltink, H.</creatorcontrib><creatorcontrib>Verlinde, J.</creatorcontrib><creatorcontrib>Widener, K.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Journal of Atmospheric and Oceanic Technology, 28(3):445-452</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Protat, A.</au><au>Bouniol, D.</au><au>O’Connor, E. J.</au><au>Klein Baltink, H.</au><au>Verlinde, J.</au><au>Widener, K.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CloudSat as a Global Radar Calibrator</atitle><jtitle>Journal of Atmospheric and Oceanic Technology, 28(3):445-452</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>28</volume><issue>3</issue><spage>445</spage><epage>452</epage><pages>445-452</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5–1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and/or to detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a global radar calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the Radar System Airborne (RASTA) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses resulting from the change in configuration that required verification of the RASTA calibration.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/2010JTECHA1443.1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8933-874X</orcidid><orcidid>https://orcid.org/0000-0001-9020-1719</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of Atmospheric and Oceanic Technology, 28(3):445-452, 2011-03, Vol.28 (3), p.445-452
issn 0739-0572
1520-0426
language eng
recordid cdi_hal_primary_oai_HAL_hal_00493275v1
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Agreements
Airborne radar
AIRCRAFT
ALASKA
Anomalies
Atmospheric radiation
Atmospheric radiation measurements
Backscatter
CALIBRATION
Climatology
cloud
CLOUDS
CloudSat
CONFIGURATION
Data processing
Doppler sonar
Downward long wave radiation
Earth Sciences
ENVIRONMENTAL SCIENCES
Global Changes
Meteorology
NETHERLANDS
Ocean surface
Ocean, Atmosphere
RADAR
Radar data
Radar equipment
Radar measurement
Radiation measurement
Radiation-cloud interactions
RADIATIONS
Rainfall measurement
satellite
Sciences of the Universe
Statistics
VERIFICATION
title CloudSat as a Global Radar Calibrator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CloudSat%20as%20a%20Global%20Radar%20Calibrator&rft.jtitle=Journal%20of%20Atmospheric%20and%20Oceanic%20Technology,%2028(3):445-452&rft.au=Protat,%20A.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2011-03-01&rft.volume=28&rft.issue=3&rft.spage=445&rft.epage=452&rft.pages=445-452&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/2010JTECHA1443.1&rft_dat=%3Cproquest_osti_%3E2323960901%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826213806&rft_id=info:pmid/&rfr_iscdi=true