A Numerical Approach Related to Defect-Type Theories for Some Weakly Random Problems in Homogenization
We present in this paper an approach for computing the homogenized behavior of a medium that is a small random perturbation of a periodic reference material. The random perturbation we consider is, in a sense made precise in our work, a rare event at the microscopic level. It, however, affects the m...
Gespeichert in:
Veröffentlicht in: | Multiscale modeling & simulation 2011-01, Vol.9 (2), p.513-544 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 544 |
---|---|
container_issue | 2 |
container_start_page | 513 |
container_title | Multiscale modeling & simulation |
container_volume | 9 |
creator | Anantharaman, A. Le Bris, C. |
description | We present in this paper an approach for computing the homogenized behavior of a medium that is a small random perturbation of a periodic reference material. The random perturbation we consider is, in a sense made precise in our work, a rare event at the microscopic level. It, however, affects the macroscopic properties of the material, and we indeed provide a method to compute the first- and second-order corrections. To this end, we formally establish an asymptotic expansion of the macroscopic properties. Our perturbative approach shares common features with a defect-type theory of solid state physics. The computational efficiency of the approach is demonstrated. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/10079639X |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00487759v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3007291421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-40e51c2f4f6e5e5f48fea443b08057e49d477dc048516ea24d23fe074c9983a43</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsHv0HAk4fVZJNsNsel_qlQVGpFbyHNTuzW3U1NtkL99G6p1MMww_Dmx5uH0DklV5QyeU0JkSpj6v0ADajgJGE8k4f7WahjdBLjkpCUZCkZIFfgx3UDobKmxsVqFbyxCzyF2nRQ4s7jG3Bgu2S2WQGeLcCHCiJ2PuAX3wB-A_NZb_DUtKVv8HPw8xqaiKsWj33jP6CtfkxX-fYUHTlTRzj760P0enc7G42TydP9w6iYJDZVtEs4AUFt6rjLQIBwPHdgOGdzkhMhgauSS1lawnNBMzApL1PmgEhulcqZ4WyILnfchan1KlSNCRvtTaXHxURvd6S_lVKob9prL3ba_umvNcROL_06tL093SeZUtEX-Sfa4GMM4PZYSvQ2cr2PnP0CPHhxZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372157210</pqid></control><display><type>article</type><title>A Numerical Approach Related to Defect-Type Theories for Some Weakly Random Problems in Homogenization</title><source>SIAM Journals Online</source><creator>Anantharaman, A. ; Le Bris, C.</creator><creatorcontrib>Anantharaman, A. ; Le Bris, C.</creatorcontrib><description>We present in this paper an approach for computing the homogenized behavior of a medium that is a small random perturbation of a periodic reference material. The random perturbation we consider is, in a sense made precise in our work, a rare event at the microscopic level. It, however, affects the macroscopic properties of the material, and we indeed provide a method to compute the first- and second-order corrections. To this end, we formally establish an asymptotic expansion of the macroscopic properties. Our perturbative approach shares common features with a defect-type theory of solid state physics. The computational efficiency of the approach is demonstrated. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1540-3459</identifier><identifier>EISSN: 1540-3467</identifier><identifier>DOI: 10.1137/10079639X</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Analysis of PDEs ; Composite materials ; Homogenization ; Mathematics ; Partial differential equations ; Random variables</subject><ispartof>Multiscale modeling & simulation, 2011-01, Vol.9 (2), p.513-544</ispartof><rights>Copyright © 2011 Society for Industrial and Applied Mathematics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-40e51c2f4f6e5e5f48fea443b08057e49d477dc048516ea24d23fe074c9983a43</citedby><cites>FETCH-LOGICAL-c291t-40e51c2f4f6e5e5f48fea443b08057e49d477dc048516ea24d23fe074c9983a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,3188,27933,27934</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00487759$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Anantharaman, A.</creatorcontrib><creatorcontrib>Le Bris, C.</creatorcontrib><title>A Numerical Approach Related to Defect-Type Theories for Some Weakly Random Problems in Homogenization</title><title>Multiscale modeling & simulation</title><description>We present in this paper an approach for computing the homogenized behavior of a medium that is a small random perturbation of a periodic reference material. The random perturbation we consider is, in a sense made precise in our work, a rare event at the microscopic level. It, however, affects the macroscopic properties of the material, and we indeed provide a method to compute the first- and second-order corrections. To this end, we formally establish an asymptotic expansion of the macroscopic properties. Our perturbative approach shares common features with a defect-type theory of solid state physics. The computational efficiency of the approach is demonstrated. [PUBLICATION ABSTRACT]</description><subject>Analysis of PDEs</subject><subject>Composite materials</subject><subject>Homogenization</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Random variables</subject><issn>1540-3459</issn><issn>1540-3467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkE9LAzEQxYMoWKsHv0HAk4fVZJNsNsel_qlQVGpFbyHNTuzW3U1NtkL99G6p1MMww_Dmx5uH0DklV5QyeU0JkSpj6v0ADajgJGE8k4f7WahjdBLjkpCUZCkZIFfgx3UDobKmxsVqFbyxCzyF2nRQ4s7jG3Bgu2S2WQGeLcCHCiJ2PuAX3wB-A_NZb_DUtKVv8HPw8xqaiKsWj33jP6CtfkxX-fYUHTlTRzj760P0enc7G42TydP9w6iYJDZVtEs4AUFt6rjLQIBwPHdgOGdzkhMhgauSS1lawnNBMzApL1PmgEhulcqZ4WyILnfchan1KlSNCRvtTaXHxURvd6S_lVKob9prL3ba_umvNcROL_06tL093SeZUtEX-Sfa4GMM4PZYSvQ2cr2PnP0CPHhxZA</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Anantharaman, A.</creator><creator>Le Bris, C.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>1XC</scope></search><sort><creationdate>20110101</creationdate><title>A Numerical Approach Related to Defect-Type Theories for Some Weakly Random Problems in Homogenization</title><author>Anantharaman, A. ; Le Bris, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-40e51c2f4f6e5e5f48fea443b08057e49d477dc048516ea24d23fe074c9983a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis of PDEs</topic><topic>Composite materials</topic><topic>Homogenization</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anantharaman, A.</creatorcontrib><creatorcontrib>Le Bris, C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Multiscale modeling & simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anantharaman, A.</au><au>Le Bris, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Approach Related to Defect-Type Theories for Some Weakly Random Problems in Homogenization</atitle><jtitle>Multiscale modeling & simulation</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>9</volume><issue>2</issue><spage>513</spage><epage>544</epage><pages>513-544</pages><issn>1540-3459</issn><eissn>1540-3467</eissn><abstract>We present in this paper an approach for computing the homogenized behavior of a medium that is a small random perturbation of a periodic reference material. The random perturbation we consider is, in a sense made precise in our work, a rare event at the microscopic level. It, however, affects the macroscopic properties of the material, and we indeed provide a method to compute the first- and second-order corrections. To this end, we formally establish an asymptotic expansion of the macroscopic properties. Our perturbative approach shares common features with a defect-type theory of solid state physics. The computational efficiency of the approach is demonstrated. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/10079639X</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-3459 |
ispartof | Multiscale modeling & simulation, 2011-01, Vol.9 (2), p.513-544 |
issn | 1540-3459 1540-3467 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00487759v1 |
source | SIAM Journals Online |
subjects | Analysis of PDEs Composite materials Homogenization Mathematics Partial differential equations Random variables |
title | A Numerical Approach Related to Defect-Type Theories for Some Weakly Random Problems in Homogenization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T08%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Approach%20Related%20to%20Defect-Type%20Theories%20for%20Some%20Weakly%20Random%20Problems%20in%20Homogenization&rft.jtitle=Multiscale%20modeling%20&%20simulation&rft.au=Anantharaman,%20A.&rft.date=2011-01-01&rft.volume=9&rft.issue=2&rft.spage=513&rft.epage=544&rft.pages=513-544&rft.issn=1540-3459&rft.eissn=1540-3467&rft_id=info:doi/10.1137/10079639X&rft_dat=%3Cproquest_hal_p%3E3007291421%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372157210&rft_id=info:pmid/&rfr_iscdi=true |