Effect of titanium on copper–titanium/carbon nanofibre composite materials
Copper/carbon nanofibre composites containing titanium varying from 0.3 wt.% to 5 wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has of...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2010-12, Vol.70 (16), p.2284-2289 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2289 |
---|---|
container_issue | 16 |
container_start_page | 2284 |
container_title | Composites science and technology |
container_volume | 70 |
creator | Lloyd, J.C. Neubauer, E. Barcena, J. Clegg, W.J. |
description | Copper/carbon nanofibre composites containing titanium varying from 0.3
wt.% to 5
wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has often been attributed to limited heat flow across the interface. A study has been made of the composite microstructure using X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It is shown in these materials, that the low composite thermal conductivity arises primarily because the highly graphitic carbon nanofibre structure transforms into amorphous carbon during the fabrication process. |
doi_str_mv | 10.1016/j.compscitech.2010.05.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00485516v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353810001740</els_id><sourcerecordid>849462802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-2bcbe90812b04a3c5df43a6a14a62dc8aa6d03fcfd235b6a3078c13dd2d87df13</originalsourceid><addsrcrecordid>eNqNkctKBDEQRYMoOD7-oV2pix4rSSedXsrgCwbc6Dqk88AM05026RHc-Q_-oV9imlFxJa4Kbp2qutRF6ATDHAPmF6u5Dt2QtB-tfpoTyDqwOQDZQTMs6qbEwGAXzYBwXlJGxT46SGkFADVryAwtr5yzeiyCK0Y_qt5vuiL0hQ7DYOPH2_u3eKFVbHOjV31wvo22mO6GlO8WnRpt9GqdjtCey8Uef9VD9Hh99bC4LZf3N3eLy2WpGa3HkrS6tQ0ITFqoFNXMuIoqrnClODFaKMUNUKedIZS1XFGohcbUGGJEbRymh-h8u_dJreUQfafiqwzKy9vLpZw0gEowhvnLxJ5u2SGG541No-x80na9Vr0NmyRF1VScCCCZPPuTxDWjjFHOJrTZojqGlKJ1Py4wyCkXuZK_cpFTLhJY9jXNLrazNn_oxdsoM2V7bY2POQlpgv_Hlk-Lpp3z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753553652</pqid></control><display><type>article</type><title>Effect of titanium on copper–titanium/carbon nanofibre composite materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lloyd, J.C. ; Neubauer, E. ; Barcena, J. ; Clegg, W.J.</creator><creatorcontrib>Lloyd, J.C. ; Neubauer, E. ; Barcena, J. ; Clegg, W.J.</creatorcontrib><description>Copper/carbon nanofibre composites containing titanium varying from 0.3
wt.% to 5
wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has often been attributed to limited heat flow across the interface. A study has been made of the composite microstructure using X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It is shown in these materials, that the low composite thermal conductivity arises primarily because the highly graphitic carbon nanofibre structure transforms into amorphous carbon during the fabrication process.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2010.05.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Metal–matrix composite (MMCs) ; Amorphous materials ; AMORPHOUS STRUCTURE ; B. Thermal properties ; Carbon ; Carbon nanofibre ; Composite materials ; COMPOSITES ; D. Raman spectroscopy ; D. Transmission electron microscopy (TEM) ; ELECTRICAL CONDUCTIVITY ; FIBERS ; HEAT TRANSFER ; MICROSTRUCTURES ; Nanocomposites ; Nanomaterials ; Nanostructure ; THERMAL CONDUCTIVITY ; Titanium</subject><ispartof>Composites science and technology, 2010-12, Vol.70 (16), p.2284-2289</ispartof><rights>2010 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-2bcbe90812b04a3c5df43a6a14a62dc8aa6d03fcfd235b6a3078c13dd2d87df13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2010.05.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00485516$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lloyd, J.C.</creatorcontrib><creatorcontrib>Neubauer, E.</creatorcontrib><creatorcontrib>Barcena, J.</creatorcontrib><creatorcontrib>Clegg, W.J.</creatorcontrib><title>Effect of titanium on copper–titanium/carbon nanofibre composite materials</title><title>Composites science and technology</title><description>Copper/carbon nanofibre composites containing titanium varying from 0.3
wt.% to 5
wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has often been attributed to limited heat flow across the interface. A study has been made of the composite microstructure using X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It is shown in these materials, that the low composite thermal conductivity arises primarily because the highly graphitic carbon nanofibre structure transforms into amorphous carbon during the fabrication process.</description><subject>A. Metal–matrix composite (MMCs)</subject><subject>Amorphous materials</subject><subject>AMORPHOUS STRUCTURE</subject><subject>B. Thermal properties</subject><subject>Carbon</subject><subject>Carbon nanofibre</subject><subject>Composite materials</subject><subject>COMPOSITES</subject><subject>D. Raman spectroscopy</subject><subject>D. Transmission electron microscopy (TEM)</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>FIBERS</subject><subject>HEAT TRANSFER</subject><subject>MICROSTRUCTURES</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>THERMAL CONDUCTIVITY</subject><subject>Titanium</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkctKBDEQRYMoOD7-oV2pix4rSSedXsrgCwbc6Dqk88AM05026RHc-Q_-oV9imlFxJa4Kbp2qutRF6ATDHAPmF6u5Dt2QtB-tfpoTyDqwOQDZQTMs6qbEwGAXzYBwXlJGxT46SGkFADVryAwtr5yzeiyCK0Y_qt5vuiL0hQ7DYOPH2_u3eKFVbHOjV31wvo22mO6GlO8WnRpt9GqdjtCey8Uef9VD9Hh99bC4LZf3N3eLy2WpGa3HkrS6tQ0ITFqoFNXMuIoqrnClODFaKMUNUKedIZS1XFGohcbUGGJEbRymh-h8u_dJreUQfafiqwzKy9vLpZw0gEowhvnLxJ5u2SGG541No-x80na9Vr0NmyRF1VScCCCZPPuTxDWjjFHOJrTZojqGlKJ1Py4wyCkXuZK_cpFTLhJY9jXNLrazNn_oxdsoM2V7bY2POQlpgv_Hlk-Lpp3z</recordid><startdate>20101231</startdate><enddate>20101231</enddate><creator>Lloyd, J.C.</creator><creator>Neubauer, E.</creator><creator>Barcena, J.</creator><creator>Clegg, W.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20101231</creationdate><title>Effect of titanium on copper–titanium/carbon nanofibre composite materials</title><author>Lloyd, J.C. ; Neubauer, E. ; Barcena, J. ; Clegg, W.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-2bcbe90812b04a3c5df43a6a14a62dc8aa6d03fcfd235b6a3078c13dd2d87df13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A. Metal–matrix composite (MMCs)</topic><topic>Amorphous materials</topic><topic>AMORPHOUS STRUCTURE</topic><topic>B. Thermal properties</topic><topic>Carbon</topic><topic>Carbon nanofibre</topic><topic>Composite materials</topic><topic>COMPOSITES</topic><topic>D. Raman spectroscopy</topic><topic>D. Transmission electron microscopy (TEM)</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>FIBERS</topic><topic>HEAT TRANSFER</topic><topic>MICROSTRUCTURES</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>THERMAL CONDUCTIVITY</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, J.C.</creatorcontrib><creatorcontrib>Neubauer, E.</creatorcontrib><creatorcontrib>Barcena, J.</creatorcontrib><creatorcontrib>Clegg, W.J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, J.C.</au><au>Neubauer, E.</au><au>Barcena, J.</au><au>Clegg, W.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of titanium on copper–titanium/carbon nanofibre composite materials</atitle><jtitle>Composites science and technology</jtitle><date>2010-12-31</date><risdate>2010</risdate><volume>70</volume><issue>16</issue><spage>2284</spage><epage>2289</epage><pages>2284-2289</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Copper/carbon nanofibre composites containing titanium varying from 0.3
wt.% to 5
wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has often been attributed to limited heat flow across the interface. A study has been made of the composite microstructure using X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It is shown in these materials, that the low composite thermal conductivity arises primarily because the highly graphitic carbon nanofibre structure transforms into amorphous carbon during the fabrication process.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2010.05.002</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2010-12, Vol.70 (16), p.2284-2289 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00485516v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | A. Metal–matrix composite (MMCs) Amorphous materials AMORPHOUS STRUCTURE B. Thermal properties Carbon Carbon nanofibre Composite materials COMPOSITES D. Raman spectroscopy D. Transmission electron microscopy (TEM) ELECTRICAL CONDUCTIVITY FIBERS HEAT TRANSFER MICROSTRUCTURES Nanocomposites Nanomaterials Nanostructure THERMAL CONDUCTIVITY Titanium |
title | Effect of titanium on copper–titanium/carbon nanofibre composite materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20titanium%20on%20copper%E2%80%93titanium/carbon%20nanofibre%20composite%20materials&rft.jtitle=Composites%20science%20and%20technology&rft.au=Lloyd,%20J.C.&rft.date=2010-12-31&rft.volume=70&rft.issue=16&rft.spage=2284&rft.epage=2289&rft.pages=2284-2289&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2010.05.002&rft_dat=%3Cproquest_hal_p%3E849462802%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753553652&rft_id=info:pmid/&rft_els_id=S0266353810001740&rfr_iscdi=true |