Effect of titanium on copper–titanium/carbon nanofibre composite materials

Copper/carbon nanofibre composites containing titanium varying from 0.3 wt.% to 5 wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2010-12, Vol.70 (16), p.2284-2289
Hauptverfasser: Lloyd, J.C., Neubauer, E., Barcena, J., Clegg, W.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2289
container_issue 16
container_start_page 2284
container_title Composites science and technology
container_volume 70
creator Lloyd, J.C.
Neubauer, E.
Barcena, J.
Clegg, W.J.
description Copper/carbon nanofibre composites containing titanium varying from 0.3 wt.% to 5 wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has often been attributed to limited heat flow across the interface. A study has been made of the composite microstructure using X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It is shown in these materials, that the low composite thermal conductivity arises primarily because the highly graphitic carbon nanofibre structure transforms into amorphous carbon during the fabrication process.
doi_str_mv 10.1016/j.compscitech.2010.05.002
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00485516v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353810001740</els_id><sourcerecordid>849462802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-2bcbe90812b04a3c5df43a6a14a62dc8aa6d03fcfd235b6a3078c13dd2d87df13</originalsourceid><addsrcrecordid>eNqNkctKBDEQRYMoOD7-oV2pix4rSSedXsrgCwbc6Dqk88AM05026RHc-Q_-oV9imlFxJa4Kbp2qutRF6ATDHAPmF6u5Dt2QtB-tfpoTyDqwOQDZQTMs6qbEwGAXzYBwXlJGxT46SGkFADVryAwtr5yzeiyCK0Y_qt5vuiL0hQ7DYOPH2_u3eKFVbHOjV31wvo22mO6GlO8WnRpt9GqdjtCey8Uef9VD9Hh99bC4LZf3N3eLy2WpGa3HkrS6tQ0ITFqoFNXMuIoqrnClODFaKMUNUKedIZS1XFGohcbUGGJEbRymh-h8u_dJreUQfafiqwzKy9vLpZw0gEowhvnLxJ5u2SGG541No-x80na9Vr0NmyRF1VScCCCZPPuTxDWjjFHOJrTZojqGlKJ1Py4wyCkXuZK_cpFTLhJY9jXNLrazNn_oxdsoM2V7bY2POQlpgv_Hlk-Lpp3z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753553652</pqid></control><display><type>article</type><title>Effect of titanium on copper–titanium/carbon nanofibre composite materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lloyd, J.C. ; Neubauer, E. ; Barcena, J. ; Clegg, W.J.</creator><creatorcontrib>Lloyd, J.C. ; Neubauer, E. ; Barcena, J. ; Clegg, W.J.</creatorcontrib><description>Copper/carbon nanofibre composites containing titanium varying from 0.3 wt.% to 5 wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has often been attributed to limited heat flow across the interface. A study has been made of the composite microstructure using X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It is shown in these materials, that the low composite thermal conductivity arises primarily because the highly graphitic carbon nanofibre structure transforms into amorphous carbon during the fabrication process.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2010.05.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Metal–matrix composite (MMCs) ; Amorphous materials ; AMORPHOUS STRUCTURE ; B. Thermal properties ; Carbon ; Carbon nanofibre ; Composite materials ; COMPOSITES ; D. Raman spectroscopy ; D. Transmission electron microscopy (TEM) ; ELECTRICAL CONDUCTIVITY ; FIBERS ; HEAT TRANSFER ; MICROSTRUCTURES ; Nanocomposites ; Nanomaterials ; Nanostructure ; THERMAL CONDUCTIVITY ; Titanium</subject><ispartof>Composites science and technology, 2010-12, Vol.70 (16), p.2284-2289</ispartof><rights>2010 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-2bcbe90812b04a3c5df43a6a14a62dc8aa6d03fcfd235b6a3078c13dd2d87df13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2010.05.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00485516$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lloyd, J.C.</creatorcontrib><creatorcontrib>Neubauer, E.</creatorcontrib><creatorcontrib>Barcena, J.</creatorcontrib><creatorcontrib>Clegg, W.J.</creatorcontrib><title>Effect of titanium on copper–titanium/carbon nanofibre composite materials</title><title>Composites science and technology</title><description>Copper/carbon nanofibre composites containing titanium varying from 0.3 wt.% to 5 wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has often been attributed to limited heat flow across the interface. A study has been made of the composite microstructure using X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It is shown in these materials, that the low composite thermal conductivity arises primarily because the highly graphitic carbon nanofibre structure transforms into amorphous carbon during the fabrication process.</description><subject>A. Metal–matrix composite (MMCs)</subject><subject>Amorphous materials</subject><subject>AMORPHOUS STRUCTURE</subject><subject>B. Thermal properties</subject><subject>Carbon</subject><subject>Carbon nanofibre</subject><subject>Composite materials</subject><subject>COMPOSITES</subject><subject>D. Raman spectroscopy</subject><subject>D. Transmission electron microscopy (TEM)</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>FIBERS</subject><subject>HEAT TRANSFER</subject><subject>MICROSTRUCTURES</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>THERMAL CONDUCTIVITY</subject><subject>Titanium</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkctKBDEQRYMoOD7-oV2pix4rSSedXsrgCwbc6Dqk88AM05026RHc-Q_-oV9imlFxJa4Kbp2qutRF6ATDHAPmF6u5Dt2QtB-tfpoTyDqwOQDZQTMs6qbEwGAXzYBwXlJGxT46SGkFADVryAwtr5yzeiyCK0Y_qt5vuiL0hQ7DYOPH2_u3eKFVbHOjV31wvo22mO6GlO8WnRpt9GqdjtCey8Uef9VD9Hh99bC4LZf3N3eLy2WpGa3HkrS6tQ0ITFqoFNXMuIoqrnClODFaKMUNUKedIZS1XFGohcbUGGJEbRymh-h8u_dJreUQfafiqwzKy9vLpZw0gEowhvnLxJ5u2SGG541No-x80na9Vr0NmyRF1VScCCCZPPuTxDWjjFHOJrTZojqGlKJ1Py4wyCkXuZK_cpFTLhJY9jXNLrazNn_oxdsoM2V7bY2POQlpgv_Hlk-Lpp3z</recordid><startdate>20101231</startdate><enddate>20101231</enddate><creator>Lloyd, J.C.</creator><creator>Neubauer, E.</creator><creator>Barcena, J.</creator><creator>Clegg, W.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20101231</creationdate><title>Effect of titanium on copper–titanium/carbon nanofibre composite materials</title><author>Lloyd, J.C. ; Neubauer, E. ; Barcena, J. ; Clegg, W.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-2bcbe90812b04a3c5df43a6a14a62dc8aa6d03fcfd235b6a3078c13dd2d87df13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A. Metal–matrix composite (MMCs)</topic><topic>Amorphous materials</topic><topic>AMORPHOUS STRUCTURE</topic><topic>B. Thermal properties</topic><topic>Carbon</topic><topic>Carbon nanofibre</topic><topic>Composite materials</topic><topic>COMPOSITES</topic><topic>D. Raman spectroscopy</topic><topic>D. Transmission electron microscopy (TEM)</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>FIBERS</topic><topic>HEAT TRANSFER</topic><topic>MICROSTRUCTURES</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>THERMAL CONDUCTIVITY</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, J.C.</creatorcontrib><creatorcontrib>Neubauer, E.</creatorcontrib><creatorcontrib>Barcena, J.</creatorcontrib><creatorcontrib>Clegg, W.J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, J.C.</au><au>Neubauer, E.</au><au>Barcena, J.</au><au>Clegg, W.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of titanium on copper–titanium/carbon nanofibre composite materials</atitle><jtitle>Composites science and technology</jtitle><date>2010-12-31</date><risdate>2010</risdate><volume>70</volume><issue>16</issue><spage>2284</spage><epage>2289</epage><pages>2284-2289</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Copper/carbon nanofibre composites containing titanium varying from 0.3 wt.% to 5 wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has often been attributed to limited heat flow across the interface. A study has been made of the composite microstructure using X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It is shown in these materials, that the low composite thermal conductivity arises primarily because the highly graphitic carbon nanofibre structure transforms into amorphous carbon during the fabrication process.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2010.05.002</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2010-12, Vol.70 (16), p.2284-2289
issn 0266-3538
1879-1050
language eng
recordid cdi_hal_primary_oai_HAL_hal_00485516v1
source Elsevier ScienceDirect Journals Complete
subjects A. Metal–matrix composite (MMCs)
Amorphous materials
AMORPHOUS STRUCTURE
B. Thermal properties
Carbon
Carbon nanofibre
Composite materials
COMPOSITES
D. Raman spectroscopy
D. Transmission electron microscopy (TEM)
ELECTRICAL CONDUCTIVITY
FIBERS
HEAT TRANSFER
MICROSTRUCTURES
Nanocomposites
Nanomaterials
Nanostructure
THERMAL CONDUCTIVITY
Titanium
title Effect of titanium on copper–titanium/carbon nanofibre composite materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T03%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20titanium%20on%20copper%E2%80%93titanium/carbon%20nanofibre%20composite%20materials&rft.jtitle=Composites%20science%20and%20technology&rft.au=Lloyd,%20J.C.&rft.date=2010-12-31&rft.volume=70&rft.issue=16&rft.spage=2284&rft.epage=2289&rft.pages=2284-2289&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2010.05.002&rft_dat=%3Cproquest_hal_p%3E849462802%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753553652&rft_id=info:pmid/&rft_els_id=S0266353810001740&rfr_iscdi=true