On the model-checking of monadic second-order formulas with edge set quantifications
We extend clique-width to graphs with multiple edges. We obtain fixed-parameter tractable model-checking algorithms for certain monadic second-order graph properties that depend on the multiplicities of edges, with respect to this “new” clique-width. We define special tree-width, the variant of tree...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2012-04, Vol.160 (6), p.866-887 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 887 |
---|---|
container_issue | 6 |
container_start_page | 866 |
container_title | Discrete Applied Mathematics |
container_volume | 160 |
creator | Courcelle, Bruno |
description | We extend clique-width to graphs with multiple edges. We obtain fixed-parameter tractable model-checking algorithms for certain monadic second-order graph properties that depend on the multiplicities of edges, with respect to this “new” clique-width. We define special tree-width, the variant of tree-width relative to tree-decompositions such that the boxes that contain a vertex are on a path originating from some fixed node. We study its main properties. This definition is motivated by the construction of finite automata associated with monadic second-order formulas using edge set quantifications. These automata yield fixed-parameter linear algorithms with respect to tree-width for the model-checking of these formulas. Their construction is much simpler for special tree-width than for tree-width, for reasons that we explain. |
doi_str_mv | 10.1016/j.dam.2010.12.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00481735v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X10004361</els_id><sourcerecordid>1019646704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-51319f2326576c290debbc66114f47f0bb5a7e9690123a5a286bb6f1e5d76ba13</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEuPPB-DWIxw64rRNVnGaEDCkSbsMiVuUJs6W0TZb0oH49mQa4sjJevbvWfYj5AboGCjw-83YqG7M6EGzMQVxQkYwESznQsApGSWG5wwm7-fkIsYNpRSSGpHlos-GNWadN9jmeo36w_WrzNvU6ZVxOouofW9yHwyGzPrQ7VsVsy83rDM0K0zzIdvtVT8467QanO_jFTmzqo14_Vsvydvz0_Jxls8XL6-P03muSyqGvIICassKxivBNaupwabRnAOUthSWNk2lBNa8TrcWqlJswpuGW8DKCN4oKC7J3XHvWrVyG1ynwrf0ysnZdC4PPUrLCYii-mSJvT2y2-B3e4yD7FzU2LaqR7-PMqVY85ILWiYUjqgOPsaA9m830APH5UamtOUhbQlMprST5-HowfTvp8Mgo3bYazQuoB6k8e4f9w9gj4aG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019646704</pqid></control><display><type>article</type><title>On the model-checking of monadic second-order formulas with edge set quantifications</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Courcelle, Bruno</creator><creatorcontrib>Courcelle, Bruno</creatorcontrib><description>We extend clique-width to graphs with multiple edges. We obtain fixed-parameter tractable model-checking algorithms for certain monadic second-order graph properties that depend on the multiplicities of edges, with respect to this “new” clique-width. We define special tree-width, the variant of tree-width relative to tree-decompositions such that the boxes that contain a vertex are on a path originating from some fixed node. We study its main properties. This definition is motivated by the construction of finite automata associated with monadic second-order formulas using edge set quantifications. These automata yield fixed-parameter linear algorithms with respect to tree-width for the model-checking of these formulas. Their construction is much simpler for special tree-width than for tree-width, for reasons that we explain.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2010.12.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Automation ; Clique-width ; Computer Science ; Construction ; Graph decomposition ; Graphs ; Logic in Computer Science ; Mathematical analysis ; Mathematical models ; Model-checking ; Monadic second-order logic ; Tree-width</subject><ispartof>Discrete Applied Mathematics, 2012-04, Vol.160 (6), p.866-887</ispartof><rights>2010 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-51319f2326576c290debbc66114f47f0bb5a7e9690123a5a286bb6f1e5d76ba13</citedby><cites>FETCH-LOGICAL-c407t-51319f2326576c290debbc66114f47f0bb5a7e9690123a5a286bb6f1e5d76ba13</cites><orcidid>0000-0002-5545-8970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2010.12.017$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00481735$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Courcelle, Bruno</creatorcontrib><title>On the model-checking of monadic second-order formulas with edge set quantifications</title><title>Discrete Applied Mathematics</title><description>We extend clique-width to graphs with multiple edges. We obtain fixed-parameter tractable model-checking algorithms for certain monadic second-order graph properties that depend on the multiplicities of edges, with respect to this “new” clique-width. We define special tree-width, the variant of tree-width relative to tree-decompositions such that the boxes that contain a vertex are on a path originating from some fixed node. We study its main properties. This definition is motivated by the construction of finite automata associated with monadic second-order formulas using edge set quantifications. These automata yield fixed-parameter linear algorithms with respect to tree-width for the model-checking of these formulas. Their construction is much simpler for special tree-width than for tree-width, for reasons that we explain.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Clique-width</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Graph decomposition</subject><subject>Graphs</subject><subject>Logic in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Model-checking</subject><subject>Monadic second-order logic</subject><subject>Tree-width</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEuPPB-DWIxw64rRNVnGaEDCkSbsMiVuUJs6W0TZb0oH49mQa4sjJevbvWfYj5AboGCjw-83YqG7M6EGzMQVxQkYwESznQsApGSWG5wwm7-fkIsYNpRSSGpHlos-GNWadN9jmeo36w_WrzNvU6ZVxOouofW9yHwyGzPrQ7VsVsy83rDM0K0zzIdvtVT8467QanO_jFTmzqo14_Vsvydvz0_Jxls8XL6-P03muSyqGvIICassKxivBNaupwabRnAOUthSWNk2lBNa8TrcWqlJswpuGW8DKCN4oKC7J3XHvWrVyG1ynwrf0ysnZdC4PPUrLCYii-mSJvT2y2-B3e4yD7FzU2LaqR7-PMqVY85ILWiYUjqgOPsaA9m830APH5UamtOUhbQlMprST5-HowfTvp8Mgo3bYazQuoB6k8e4f9w9gj4aG</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Courcelle, Bruno</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5545-8970</orcidid></search><sort><creationdate>20120401</creationdate><title>On the model-checking of monadic second-order formulas with edge set quantifications</title><author>Courcelle, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-51319f2326576c290debbc66114f47f0bb5a7e9690123a5a286bb6f1e5d76ba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Clique-width</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Graph decomposition</topic><topic>Graphs</topic><topic>Logic in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Model-checking</topic><topic>Monadic second-order logic</topic><topic>Tree-width</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Courcelle, Bruno</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Courcelle, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the model-checking of monadic second-order formulas with edge set quantifications</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>160</volume><issue>6</issue><spage>866</spage><epage>887</epage><pages>866-887</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>We extend clique-width to graphs with multiple edges. We obtain fixed-parameter tractable model-checking algorithms for certain monadic second-order graph properties that depend on the multiplicities of edges, with respect to this “new” clique-width. We define special tree-width, the variant of tree-width relative to tree-decompositions such that the boxes that contain a vertex are on a path originating from some fixed node. We study its main properties. This definition is motivated by the construction of finite automata associated with monadic second-order formulas using edge set quantifications. These automata yield fixed-parameter linear algorithms with respect to tree-width for the model-checking of these formulas. Their construction is much simpler for special tree-width than for tree-width, for reasons that we explain.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2010.12.017</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-5545-8970</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2012-04, Vol.160 (6), p.866-887 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00481735v2 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Automation Clique-width Computer Science Construction Graph decomposition Graphs Logic in Computer Science Mathematical analysis Mathematical models Model-checking Monadic second-order logic Tree-width |
title | On the model-checking of monadic second-order formulas with edge set quantifications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20model-checking%20of%20monadic%20second-order%20formulas%20with%20edge%20set%20quantifications&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Courcelle,%20Bruno&rft.date=2012-04-01&rft.volume=160&rft.issue=6&rft.spage=866&rft.epage=887&rft.pages=866-887&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2010.12.017&rft_dat=%3Cproquest_hal_p%3E1019646704%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019646704&rft_id=info:pmid/&rft_els_id=S0166218X10004361&rfr_iscdi=true |