Belief Scheduler based on model failure detection in the TBM framework. Application to human activity recognition

A tool called Belief Scheduler is proposed for state sequence recognition in the Transferable Belief Model (TBM) framework. This tool makes noisy temporal belief functions smoother using a Temporal Evidential Filter (TEF). The Belief Scheduler makes belief on states smoother, separates the states (a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of approximate reasoning 2010-09, Vol.51 (7), p.846-865
Hauptverfasser: Ramasso, E., Panagiotakis, C., Rombaut, M., Pellerin, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 865
container_issue 7
container_start_page 846
container_title International journal of approximate reasoning
container_volume 51
creator Ramasso, E.
Panagiotakis, C.
Rombaut, M.
Pellerin, D.
description A tool called Belief Scheduler is proposed for state sequence recognition in the Transferable Belief Model (TBM) framework. This tool makes noisy temporal belief functions smoother using a Temporal Evidential Filter (TEF). The Belief Scheduler makes belief on states smoother, separates the states (assumed to be true or false) and synchronizes them in order to infer the sequence. A criterion is also provided to assess the appropriateness between observed belief functions and a given sequence model. This criterion is based on the conflict information appearing explicitly in the TBM when combining observed belief functions with predictions. The Belief Scheduler is part of a generic architecture developed for on-line and automatic human action and activity recognition in videos of athletics taken with a moving camera. In experiments, the system is assessed on a database composed of 69 real athletics video sequences. The goal is to automatically recognize running, jumping, falling and standing-up actions as well as high jump, pole vault, triple jump and long jump activities of an athlete. A comparison with Hidden Markov Models for video classification is also provided.
doi_str_mv 10.1016/j.ijar.2010.04.005
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00475787v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888613X10000563</els_id><sourcerecordid>oai_HAL_hal_00475787v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f1762b1b1aab624abe6216263633f4679614ca36481fc552346c73c15011856c3</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi0EEkvhBTj5woFDwozt2Ebisq0oRVrEoa3EzXKcCeslmyx2dlHfvg6LeuRk6ff3zWh-xt4i1AioP-zquPOpFlACUDVA84yt0BpZKSPxOVuBtbbSKH-8ZK9y3gGANsqu2O9LGiL1_DZsqTsOlHjrM3V8Gvl-6mjgvY_DMRHvaKYwx5LHkc9b4neX33if_J7-TOlXzdeHwxCD_0vME98e937kvhinOD_wRGH6Ocbl9zV70fsh05t_7wW7v_58d3VTbb5_-Xq13lRBgZ2rHo0WLbbofauF8i1pgVpoqaXslTYfNargpVYW-9A0QiodjAzYAKJtdJAX7P157tYP7pDi3qcHN_nobtYbt2QAyjTGmhMWVpzZkKacE_VPAoJbCnY7txTsloIdqOI2RXp3lg4-Bz-ULsYQ85MpJBhRFhTu05mjcu0pUnI5RBoDdbHUMrtuiv9b8wjffJBm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Belief Scheduler based on model failure detection in the TBM framework. Application to human activity recognition</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ramasso, E. ; Panagiotakis, C. ; Rombaut, M. ; Pellerin, D.</creator><creatorcontrib>Ramasso, E. ; Panagiotakis, C. ; Rombaut, M. ; Pellerin, D.</creatorcontrib><description>A tool called Belief Scheduler is proposed for state sequence recognition in the Transferable Belief Model (TBM) framework. This tool makes noisy temporal belief functions smoother using a Temporal Evidential Filter (TEF). The Belief Scheduler makes belief on states smoother, separates the states (assumed to be true or false) and synchronizes them in order to infer the sequence. A criterion is also provided to assess the appropriateness between observed belief functions and a given sequence model. This criterion is based on the conflict information appearing explicitly in the TBM when combining observed belief functions with predictions. The Belief Scheduler is part of a generic architecture developed for on-line and automatic human action and activity recognition in videos of athletics taken with a moving camera. In experiments, the system is assessed on a database composed of 69 real athletics video sequences. The goal is to automatically recognize running, jumping, falling and standing-up actions as well as high jump, pole vault, triple jump and long jump activities of an athlete. A comparison with Hidden Markov Models for video classification is also provided.</description><identifier>ISSN: 0888-613X</identifier><identifier>EISSN: 1873-4731</identifier><identifier>DOI: 10.1016/j.ijar.2010.04.005</identifier><identifier>CODEN: IJARE4</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Applied sciences ; Artificial intelligence ; Belief finite state machine ; Computer Science ; Computer science; control theory; systems ; Conflict ; Engineering Sciences ; Exact sciences and technology ; Human motion analysis ; Learning and adaptive systems ; Pattern recognition. Digital image processing. Computational geometry ; Sequence recognition ; Signal and Image Processing ; Temporal Evidential Filter ; Transferable Belief Model</subject><ispartof>International journal of approximate reasoning, 2010-09, Vol.51 (7), p.846-865</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f1762b1b1aab624abe6216263633f4679614ca36481fc552346c73c15011856c3</citedby><cites>FETCH-LOGICAL-c408t-f1762b1b1aab624abe6216263633f4679614ca36481fc552346c73c15011856c3</cites><orcidid>0000-0002-3792-1706 ; 0000-0003-4633-8501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijar.2010.04.005$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23072757$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00475787$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramasso, E.</creatorcontrib><creatorcontrib>Panagiotakis, C.</creatorcontrib><creatorcontrib>Rombaut, M.</creatorcontrib><creatorcontrib>Pellerin, D.</creatorcontrib><title>Belief Scheduler based on model failure detection in the TBM framework. Application to human activity recognition</title><title>International journal of approximate reasoning</title><description>A tool called Belief Scheduler is proposed for state sequence recognition in the Transferable Belief Model (TBM) framework. This tool makes noisy temporal belief functions smoother using a Temporal Evidential Filter (TEF). The Belief Scheduler makes belief on states smoother, separates the states (assumed to be true or false) and synchronizes them in order to infer the sequence. A criterion is also provided to assess the appropriateness between observed belief functions and a given sequence model. This criterion is based on the conflict information appearing explicitly in the TBM when combining observed belief functions with predictions. The Belief Scheduler is part of a generic architecture developed for on-line and automatic human action and activity recognition in videos of athletics taken with a moving camera. In experiments, the system is assessed on a database composed of 69 real athletics video sequences. The goal is to automatically recognize running, jumping, falling and standing-up actions as well as high jump, pole vault, triple jump and long jump activities of an athlete. A comparison with Hidden Markov Models for video classification is also provided.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Belief finite state machine</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Conflict</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Human motion analysis</subject><subject>Learning and adaptive systems</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Sequence recognition</subject><subject>Signal and Image Processing</subject><subject>Temporal Evidential Filter</subject><subject>Transferable Belief Model</subject><issn>0888-613X</issn><issn>1873-4731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhi0EEkvhBTj5woFDwozt2Ebisq0oRVrEoa3EzXKcCeslmyx2dlHfvg6LeuRk6ff3zWh-xt4i1AioP-zquPOpFlACUDVA84yt0BpZKSPxOVuBtbbSKH-8ZK9y3gGANsqu2O9LGiL1_DZsqTsOlHjrM3V8Gvl-6mjgvY_DMRHvaKYwx5LHkc9b4neX33if_J7-TOlXzdeHwxCD_0vME98e937kvhinOD_wRGH6Ocbl9zV70fsh05t_7wW7v_58d3VTbb5_-Xq13lRBgZ2rHo0WLbbofauF8i1pgVpoqaXslTYfNargpVYW-9A0QiodjAzYAKJtdJAX7P157tYP7pDi3qcHN_nobtYbt2QAyjTGmhMWVpzZkKacE_VPAoJbCnY7txTsloIdqOI2RXp3lg4-Bz-ULsYQ85MpJBhRFhTu05mjcu0pUnI5RBoDdbHUMrtuiv9b8wjffJBm</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Ramasso, E.</creator><creator>Panagiotakis, C.</creator><creator>Rombaut, M.</creator><creator>Pellerin, D.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3792-1706</orcidid><orcidid>https://orcid.org/0000-0003-4633-8501</orcidid></search><sort><creationdate>20100901</creationdate><title>Belief Scheduler based on model failure detection in the TBM framework. Application to human activity recognition</title><author>Ramasso, E. ; Panagiotakis, C. ; Rombaut, M. ; Pellerin, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f1762b1b1aab624abe6216263633f4679614ca36481fc552346c73c15011856c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Belief finite state machine</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Conflict</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Human motion analysis</topic><topic>Learning and adaptive systems</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Sequence recognition</topic><topic>Signal and Image Processing</topic><topic>Temporal Evidential Filter</topic><topic>Transferable Belief Model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramasso, E.</creatorcontrib><creatorcontrib>Panagiotakis, C.</creatorcontrib><creatorcontrib>Rombaut, M.</creatorcontrib><creatorcontrib>Pellerin, D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of approximate reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramasso, E.</au><au>Panagiotakis, C.</au><au>Rombaut, M.</au><au>Pellerin, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Belief Scheduler based on model failure detection in the TBM framework. Application to human activity recognition</atitle><jtitle>International journal of approximate reasoning</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>51</volume><issue>7</issue><spage>846</spage><epage>865</epage><pages>846-865</pages><issn>0888-613X</issn><eissn>1873-4731</eissn><coden>IJARE4</coden><abstract>A tool called Belief Scheduler is proposed for state sequence recognition in the Transferable Belief Model (TBM) framework. This tool makes noisy temporal belief functions smoother using a Temporal Evidential Filter (TEF). The Belief Scheduler makes belief on states smoother, separates the states (assumed to be true or false) and synchronizes them in order to infer the sequence. A criterion is also provided to assess the appropriateness between observed belief functions and a given sequence model. This criterion is based on the conflict information appearing explicitly in the TBM when combining observed belief functions with predictions. The Belief Scheduler is part of a generic architecture developed for on-line and automatic human action and activity recognition in videos of athletics taken with a moving camera. In experiments, the system is assessed on a database composed of 69 real athletics video sequences. The goal is to automatically recognize running, jumping, falling and standing-up actions as well as high jump, pole vault, triple jump and long jump activities of an athlete. A comparison with Hidden Markov Models for video classification is also provided.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.ijar.2010.04.005</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3792-1706</orcidid><orcidid>https://orcid.org/0000-0003-4633-8501</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-613X
ispartof International journal of approximate reasoning, 2010-09, Vol.51 (7), p.846-865
issn 0888-613X
1873-4731
language eng
recordid cdi_hal_primary_oai_HAL_hal_00475787v1
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Applied sciences
Artificial intelligence
Belief finite state machine
Computer Science
Computer science
control theory
systems
Conflict
Engineering Sciences
Exact sciences and technology
Human motion analysis
Learning and adaptive systems
Pattern recognition. Digital image processing. Computational geometry
Sequence recognition
Signal and Image Processing
Temporal Evidential Filter
Transferable Belief Model
title Belief Scheduler based on model failure detection in the TBM framework. Application to human activity recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Belief%20Scheduler%20based%20on%20model%20failure%20detection%20in%20the%20TBM%20framework.%20Application%20to%20human%20activity%20recognition&rft.jtitle=International%20journal%20of%20approximate%20reasoning&rft.au=Ramasso,%20E.&rft.date=2010-09-01&rft.volume=51&rft.issue=7&rft.spage=846&rft.epage=865&rft.pages=846-865&rft.issn=0888-613X&rft.eissn=1873-4731&rft.coden=IJARE4&rft_id=info:doi/10.1016/j.ijar.2010.04.005&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00475787v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0888613X10000563&rfr_iscdi=true