Using the radon transform to solve inclusion problems in elasticity

From the Fourier transform method, the modified Green operator integral over a bounded domain in an infinite elastic medium takes, on each domain point, the form of a weighted average over an angular distribution of a single elementary operator. The Radon transform provides a geometric definition of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2004-02, Vol.41 (3), p.585-606
Hauptverfasser: Franciosi, P., Lormand, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 606
container_issue 3
container_start_page 585
container_title International journal of solids and structures
container_volume 41
creator Franciosi, P.
Lormand, G.
description From the Fourier transform method, the modified Green operator integral over a bounded domain in an infinite elastic medium takes, on each domain point, the form of a weighted average over an angular distribution of a single elementary operator. The Radon transform provides a geometric definition of the weight function characteristic of the domain shape, in terms of the domain intersections with all planes passing through the point. It allows a geometrically more meaningful analytical resolution of the general inclusion problem in an infinite medium of general elasticity symmetry, the “inclusion” being any bounded domain possibly made of groups (or distributions) of inclusions. The method is also likely to provide insights in the related problem of effective moduli estimates for heterogeneous microstructures. The determination of the weight functions characteristics of the involved inclusional domain shapes is therefore a key step of the resolution, the mean values of these weight functions being of first-order interest. Here, it is exemplified, on the case of cuboidal domain shapes, that for material morphologies involving shapes of hardly accessible exact mean weight functions, one can make use of approximate (conveniently analytical) expressions, to remain more accurate than using ellipsoidal approximations of the shapes.
doi_str_mv 10.1016/j.ijsolstr.2003.10.011
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00474937v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768303005936</els_id><sourcerecordid>28394070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-9b1a7776e797aded62e1c7813be6135c74066458d0e5b67a3b4023fed1e8e15f3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEuXnFVBOSBxS1nFiJzeqCihSJS70bDnOhjpK42K7lfr2OApw5bTS7LejnSHkjsKcAuWP3dx03vY-uHkGwKI4B0rPyIyWokozmvNzMgPIIBW8ZJfkyvsOAHJWwYwsN94Mn0nYYuJUY4ckODX41rpdEmwSbY-YmEH3B2_icu9s3ePORynBXvlgtAmnG3LRqt7j7c-8JpuX54_lKl2_v74tF-tUM1GEtKqpEkJwFJVQDTY8Q6pFSVmNnLJCixw4z4uyASxqLhSrc8hYiw3FEmnRsmvyMPluVS_3zuyUO0mrjFwt1nLUYiiRV0wcaWTvJza-_HVAH-TOeI19rwa0By-zklU5CIggn0DtrPcO2z9nCnLsV3byt1859jvqsd94-DQdYox8NOik1wYHjY1xqINsrPnP4htK4Ic4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28394070</pqid></control><display><type>article</type><title>Using the radon transform to solve inclusion problems in elasticity</title><source>Elsevier ScienceDirect Journals</source><creator>Franciosi, P. ; Lormand, G.</creator><creatorcontrib>Franciosi, P. ; Lormand, G.</creatorcontrib><description>From the Fourier transform method, the modified Green operator integral over a bounded domain in an infinite elastic medium takes, on each domain point, the form of a weighted average over an angular distribution of a single elementary operator. The Radon transform provides a geometric definition of the weight function characteristic of the domain shape, in terms of the domain intersections with all planes passing through the point. It allows a geometrically more meaningful analytical resolution of the general inclusion problem in an infinite medium of general elasticity symmetry, the “inclusion” being any bounded domain possibly made of groups (or distributions) of inclusions. The method is also likely to provide insights in the related problem of effective moduli estimates for heterogeneous microstructures. The determination of the weight functions characteristics of the involved inclusional domain shapes is therefore a key step of the resolution, the mean values of these weight functions being of first-order interest. Here, it is exemplified, on the case of cuboidal domain shapes, that for material morphologies involving shapes of hardly accessible exact mean weight functions, one can make use of approximate (conveniently analytical) expressions, to remain more accurate than using ellipsoidal approximations of the shapes.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2003.10.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Elasticity ; Engineering Sciences ; Eshelby inclusion problem ; Green operator integral ; Materials ; Radon transform</subject><ispartof>International journal of solids and structures, 2004-02, Vol.41 (3), p.585-606</ispartof><rights>2003 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-9b1a7776e797aded62e1c7813be6135c74066458d0e5b67a3b4023fed1e8e15f3</citedby><cites>FETCH-LOGICAL-c375t-9b1a7776e797aded62e1c7813be6135c74066458d0e5b67a3b4023fed1e8e15f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768303005936$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00474937$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Franciosi, P.</creatorcontrib><creatorcontrib>Lormand, G.</creatorcontrib><title>Using the radon transform to solve inclusion problems in elasticity</title><title>International journal of solids and structures</title><description>From the Fourier transform method, the modified Green operator integral over a bounded domain in an infinite elastic medium takes, on each domain point, the form of a weighted average over an angular distribution of a single elementary operator. The Radon transform provides a geometric definition of the weight function characteristic of the domain shape, in terms of the domain intersections with all planes passing through the point. It allows a geometrically more meaningful analytical resolution of the general inclusion problem in an infinite medium of general elasticity symmetry, the “inclusion” being any bounded domain possibly made of groups (or distributions) of inclusions. The method is also likely to provide insights in the related problem of effective moduli estimates for heterogeneous microstructures. The determination of the weight functions characteristics of the involved inclusional domain shapes is therefore a key step of the resolution, the mean values of these weight functions being of first-order interest. Here, it is exemplified, on the case of cuboidal domain shapes, that for material morphologies involving shapes of hardly accessible exact mean weight functions, one can make use of approximate (conveniently analytical) expressions, to remain more accurate than using ellipsoidal approximations of the shapes.</description><subject>Elasticity</subject><subject>Engineering Sciences</subject><subject>Eshelby inclusion problem</subject><subject>Green operator integral</subject><subject>Materials</subject><subject>Radon transform</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEuXnFVBOSBxS1nFiJzeqCihSJS70bDnOhjpK42K7lfr2OApw5bTS7LejnSHkjsKcAuWP3dx03vY-uHkGwKI4B0rPyIyWokozmvNzMgPIIBW8ZJfkyvsOAHJWwYwsN94Mn0nYYuJUY4ckODX41rpdEmwSbY-YmEH3B2_icu9s3ePORynBXvlgtAmnG3LRqt7j7c-8JpuX54_lKl2_v74tF-tUM1GEtKqpEkJwFJVQDTY8Q6pFSVmNnLJCixw4z4uyASxqLhSrc8hYiw3FEmnRsmvyMPluVS_3zuyUO0mrjFwt1nLUYiiRV0wcaWTvJza-_HVAH-TOeI19rwa0By-zklU5CIggn0DtrPcO2z9nCnLsV3byt1859jvqsd94-DQdYox8NOik1wYHjY1xqINsrPnP4htK4Ic4</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Franciosi, P.</creator><creator>Lormand, G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope></search><sort><creationdate>20040201</creationdate><title>Using the radon transform to solve inclusion problems in elasticity</title><author>Franciosi, P. ; Lormand, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-9b1a7776e797aded62e1c7813be6135c74066458d0e5b67a3b4023fed1e8e15f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Elasticity</topic><topic>Engineering Sciences</topic><topic>Eshelby inclusion problem</topic><topic>Green operator integral</topic><topic>Materials</topic><topic>Radon transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franciosi, P.</creatorcontrib><creatorcontrib>Lormand, G.</creatorcontrib><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franciosi, P.</au><au>Lormand, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the radon transform to solve inclusion problems in elasticity</atitle><jtitle>International journal of solids and structures</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>41</volume><issue>3</issue><spage>585</spage><epage>606</epage><pages>585-606</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>From the Fourier transform method, the modified Green operator integral over a bounded domain in an infinite elastic medium takes, on each domain point, the form of a weighted average over an angular distribution of a single elementary operator. The Radon transform provides a geometric definition of the weight function characteristic of the domain shape, in terms of the domain intersections with all planes passing through the point. It allows a geometrically more meaningful analytical resolution of the general inclusion problem in an infinite medium of general elasticity symmetry, the “inclusion” being any bounded domain possibly made of groups (or distributions) of inclusions. The method is also likely to provide insights in the related problem of effective moduli estimates for heterogeneous microstructures. The determination of the weight functions characteristics of the involved inclusional domain shapes is therefore a key step of the resolution, the mean values of these weight functions being of first-order interest. Here, it is exemplified, on the case of cuboidal domain shapes, that for material morphologies involving shapes of hardly accessible exact mean weight functions, one can make use of approximate (conveniently analytical) expressions, to remain more accurate than using ellipsoidal approximations of the shapes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2003.10.011</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2004-02, Vol.41 (3), p.585-606
issn 0020-7683
1879-2146
language eng
recordid cdi_hal_primary_oai_HAL_hal_00474937v1
source Elsevier ScienceDirect Journals
subjects Elasticity
Engineering Sciences
Eshelby inclusion problem
Green operator integral
Materials
Radon transform
title Using the radon transform to solve inclusion problems in elasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20radon%20transform%20to%20solve%20inclusion%20problems%20in%20elasticity&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Franciosi,%20P.&rft.date=2004-02-01&rft.volume=41&rft.issue=3&rft.spage=585&rft.epage=606&rft.pages=585-606&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2003.10.011&rft_dat=%3Cproquest_hal_p%3E28394070%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28394070&rft_id=info:pmid/&rft_els_id=S0020768303005936&rfr_iscdi=true