Using the radon transform to solve inclusion problems in elasticity
From the Fourier transform method, the modified Green operator integral over a bounded domain in an infinite elastic medium takes, on each domain point, the form of a weighted average over an angular distribution of a single elementary operator. The Radon transform provides a geometric definition of...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2004-02, Vol.41 (3), p.585-606 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 606 |
---|---|
container_issue | 3 |
container_start_page | 585 |
container_title | International journal of solids and structures |
container_volume | 41 |
creator | Franciosi, P. Lormand, G. |
description | From the Fourier transform method, the modified Green operator integral over a bounded domain in an infinite elastic medium takes, on each domain point, the form of a weighted average over an angular distribution of a single elementary operator. The Radon transform provides a geometric definition of the weight function characteristic of the domain shape, in terms of the domain intersections with all planes passing through the point. It allows a geometrically more meaningful analytical resolution of the general inclusion problem in an infinite medium of general elasticity symmetry, the “inclusion” being any bounded domain possibly made of groups (or distributions) of inclusions. The method is also likely to provide insights in the related problem of effective moduli estimates for heterogeneous microstructures. The determination of the weight functions characteristics of the involved inclusional domain shapes is therefore a key step of the resolution, the mean values of these weight functions being of first-order interest. Here, it is exemplified, on the case of cuboidal domain shapes, that for material morphologies involving shapes of hardly accessible exact mean weight functions, one can make use of approximate (conveniently analytical) expressions, to remain more accurate than using ellipsoidal approximations of the shapes. |
doi_str_mv | 10.1016/j.ijsolstr.2003.10.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00474937v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768303005936</els_id><sourcerecordid>28394070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-9b1a7776e797aded62e1c7813be6135c74066458d0e5b67a3b4023fed1e8e15f3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEuXnFVBOSBxS1nFiJzeqCihSJS70bDnOhjpK42K7lfr2OApw5bTS7LejnSHkjsKcAuWP3dx03vY-uHkGwKI4B0rPyIyWokozmvNzMgPIIBW8ZJfkyvsOAHJWwYwsN94Mn0nYYuJUY4ckODX41rpdEmwSbY-YmEH3B2_icu9s3ePORynBXvlgtAmnG3LRqt7j7c-8JpuX54_lKl2_v74tF-tUM1GEtKqpEkJwFJVQDTY8Q6pFSVmNnLJCixw4z4uyASxqLhSrc8hYiw3FEmnRsmvyMPluVS_3zuyUO0mrjFwt1nLUYiiRV0wcaWTvJza-_HVAH-TOeI19rwa0By-zklU5CIggn0DtrPcO2z9nCnLsV3byt1859jvqsd94-DQdYox8NOik1wYHjY1xqINsrPnP4htK4Ic4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28394070</pqid></control><display><type>article</type><title>Using the radon transform to solve inclusion problems in elasticity</title><source>Elsevier ScienceDirect Journals</source><creator>Franciosi, P. ; Lormand, G.</creator><creatorcontrib>Franciosi, P. ; Lormand, G.</creatorcontrib><description>From the Fourier transform method, the modified Green operator integral over a bounded domain in an infinite elastic medium takes, on each domain point, the form of a weighted average over an angular distribution of a single elementary operator. The Radon transform provides a geometric definition of the weight function characteristic of the domain shape, in terms of the domain intersections with all planes passing through the point. It allows a geometrically more meaningful analytical resolution of the general inclusion problem in an infinite medium of general elasticity symmetry, the “inclusion” being any bounded domain possibly made of groups (or distributions) of inclusions. The method is also likely to provide insights in the related problem of effective moduli estimates for heterogeneous microstructures. The determination of the weight functions characteristics of the involved inclusional domain shapes is therefore a key step of the resolution, the mean values of these weight functions being of first-order interest. Here, it is exemplified, on the case of cuboidal domain shapes, that for material morphologies involving shapes of hardly accessible exact mean weight functions, one can make use of approximate (conveniently analytical) expressions, to remain more accurate than using ellipsoidal approximations of the shapes.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2003.10.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Elasticity ; Engineering Sciences ; Eshelby inclusion problem ; Green operator integral ; Materials ; Radon transform</subject><ispartof>International journal of solids and structures, 2004-02, Vol.41 (3), p.585-606</ispartof><rights>2003 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-9b1a7776e797aded62e1c7813be6135c74066458d0e5b67a3b4023fed1e8e15f3</citedby><cites>FETCH-LOGICAL-c375t-9b1a7776e797aded62e1c7813be6135c74066458d0e5b67a3b4023fed1e8e15f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768303005936$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00474937$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Franciosi, P.</creatorcontrib><creatorcontrib>Lormand, G.</creatorcontrib><title>Using the radon transform to solve inclusion problems in elasticity</title><title>International journal of solids and structures</title><description>From the Fourier transform method, the modified Green operator integral over a bounded domain in an infinite elastic medium takes, on each domain point, the form of a weighted average over an angular distribution of a single elementary operator. The Radon transform provides a geometric definition of the weight function characteristic of the domain shape, in terms of the domain intersections with all planes passing through the point. It allows a geometrically more meaningful analytical resolution of the general inclusion problem in an infinite medium of general elasticity symmetry, the “inclusion” being any bounded domain possibly made of groups (or distributions) of inclusions. The method is also likely to provide insights in the related problem of effective moduli estimates for heterogeneous microstructures. The determination of the weight functions characteristics of the involved inclusional domain shapes is therefore a key step of the resolution, the mean values of these weight functions being of first-order interest. Here, it is exemplified, on the case of cuboidal domain shapes, that for material morphologies involving shapes of hardly accessible exact mean weight functions, one can make use of approximate (conveniently analytical) expressions, to remain more accurate than using ellipsoidal approximations of the shapes.</description><subject>Elasticity</subject><subject>Engineering Sciences</subject><subject>Eshelby inclusion problem</subject><subject>Green operator integral</subject><subject>Materials</subject><subject>Radon transform</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEuXnFVBOSBxS1nFiJzeqCihSJS70bDnOhjpK42K7lfr2OApw5bTS7LejnSHkjsKcAuWP3dx03vY-uHkGwKI4B0rPyIyWokozmvNzMgPIIBW8ZJfkyvsOAHJWwYwsN94Mn0nYYuJUY4ckODX41rpdEmwSbY-YmEH3B2_icu9s3ePORynBXvlgtAmnG3LRqt7j7c-8JpuX54_lKl2_v74tF-tUM1GEtKqpEkJwFJVQDTY8Q6pFSVmNnLJCixw4z4uyASxqLhSrc8hYiw3FEmnRsmvyMPluVS_3zuyUO0mrjFwt1nLUYiiRV0wcaWTvJza-_HVAH-TOeI19rwa0By-zklU5CIggn0DtrPcO2z9nCnLsV3byt1859jvqsd94-DQdYox8NOik1wYHjY1xqINsrPnP4htK4Ic4</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Franciosi, P.</creator><creator>Lormand, G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope></search><sort><creationdate>20040201</creationdate><title>Using the radon transform to solve inclusion problems in elasticity</title><author>Franciosi, P. ; Lormand, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-9b1a7776e797aded62e1c7813be6135c74066458d0e5b67a3b4023fed1e8e15f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Elasticity</topic><topic>Engineering Sciences</topic><topic>Eshelby inclusion problem</topic><topic>Green operator integral</topic><topic>Materials</topic><topic>Radon transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franciosi, P.</creatorcontrib><creatorcontrib>Lormand, G.</creatorcontrib><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franciosi, P.</au><au>Lormand, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using the radon transform to solve inclusion problems in elasticity</atitle><jtitle>International journal of solids and structures</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>41</volume><issue>3</issue><spage>585</spage><epage>606</epage><pages>585-606</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>From the Fourier transform method, the modified Green operator integral over a bounded domain in an infinite elastic medium takes, on each domain point, the form of a weighted average over an angular distribution of a single elementary operator. The Radon transform provides a geometric definition of the weight function characteristic of the domain shape, in terms of the domain intersections with all planes passing through the point. It allows a geometrically more meaningful analytical resolution of the general inclusion problem in an infinite medium of general elasticity symmetry, the “inclusion” being any bounded domain possibly made of groups (or distributions) of inclusions. The method is also likely to provide insights in the related problem of effective moduli estimates for heterogeneous microstructures. The determination of the weight functions characteristics of the involved inclusional domain shapes is therefore a key step of the resolution, the mean values of these weight functions being of first-order interest. Here, it is exemplified, on the case of cuboidal domain shapes, that for material morphologies involving shapes of hardly accessible exact mean weight functions, one can make use of approximate (conveniently analytical) expressions, to remain more accurate than using ellipsoidal approximations of the shapes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2003.10.011</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2004-02, Vol.41 (3), p.585-606 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00474937v1 |
source | Elsevier ScienceDirect Journals |
subjects | Elasticity Engineering Sciences Eshelby inclusion problem Green operator integral Materials Radon transform |
title | Using the radon transform to solve inclusion problems in elasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20the%20radon%20transform%20to%20solve%20inclusion%20problems%20in%20elasticity&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Franciosi,%20P.&rft.date=2004-02-01&rft.volume=41&rft.issue=3&rft.spage=585&rft.epage=606&rft.pages=585-606&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2003.10.011&rft_dat=%3Cproquest_hal_p%3E28394070%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28394070&rft_id=info:pmid/&rft_els_id=S0020768303005936&rfr_iscdi=true |