Efficient validation and construction of border arrays and validation of string matching automata
We present an on-line linear time and space algorithm to check if an integer array f is the border array of at least one string w built on a bounded or unbounded size alphabet Σ. First of all, we show a bijection between the border array of a string w and the skeleton of the DFA recognizing Σ*ω, cal...
Gespeichert in:
Veröffentlicht in: | RAIRO. Informatique théorique et applications 2009-04, Vol.43 (2), p.281-297 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 297 |
---|---|
container_issue | 2 |
container_start_page | 281 |
container_title | RAIRO. Informatique théorique et applications |
container_volume | 43 |
creator | Duval, Jean-Pierre Lecroq, Thierry Lefebvre, Arnaud |
description | We present an on-line linear time and space algorithm to check if an integer array f is the border array of at least one string w built on a bounded or unbounded size alphabet Σ. First of all, we show a bijection between the border array of a string w and the skeleton of the DFA recognizing Σ*ω, called a string matching automaton (SMA). Different strings can have the same border array but the originality of the presented method is that the correspondence between a border array and a skeleton of SMA is independent from the underlying strings. This enables to design algorithms for validating and generating border arrays that outperform existing ones. The validating algorithm lowers the delay (maximal number of comparisons on one element of the array) from O(|w|) to 1 + min{|Σ|,1 + log2|ω|} compared to existing algorithms. We then give results on the numbers of distinct border arrays depending on the alphabet size. We also present an algorithm that checks if a given directed unlabeled graph G is the skeleton of a SMA on an alphabet of size s in linear time. Along the process the algorithm can build one string w for which G is the SMA skeleton. |
doi_str_mv | 10.1051/ita:2008030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00469261v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>903616638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-e1dff68b220c549308343f41b9606c21504bf1629a5a563b072de43e4b2be5be3</originalsourceid><addsrcrecordid>eNp90V9rFDEQAPBFFDxrn_wCi6Aisnby95K-ldJa4VQoir6F2WxiU_c2NckW--2b6x2H-GBeksz8ZkiYpnlB4D0BQY5CwWMKoIDBo2ZBqIaOKfHjcbMArVTHloI_bZ7lfA0ApK5Fg2feBxvcVNpbHMOAJcSpxWlobZxySbN9CETf9jENLrWYEt7lB_FXQc1XHKaf7RqLvdoccC6xXvB588TjmN3hbj9ovp2ffT296FZfPnw8PVl1VlBVOkcG76XqKQUruGagGGeek15LkJYSAbz3RFKNAoVkPSzp4DhzvKe9E71jB83bbd8rHM1NCmtMdyZiMBcnK7OJAXCpqSS3pNo3W3uT4u_Z5WLWIVs3jji5OGejgUkiJVNVvv6vZJxTJbWu8OU_8DrOaao_NkprCoxJVtG7LbIp5pyc3z-UgNlM0NQJmt0Eq361a4nZ4ugTTjbkfQkljAutRXXd1oVc3J99HtMvI5d15kbBd3NJP9Nz8WllNLsH08upJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>899203363</pqid></control><display><type>article</type><title>Efficient validation and construction of border arrays and validation of string matching automata</title><source>NUMDAM</source><creator>Duval, Jean-Pierre ; Lecroq, Thierry ; Lefebvre, Arnaud</creator><creatorcontrib>Duval, Jean-Pierre ; Lecroq, Thierry ; Lefebvre, Arnaud</creatorcontrib><description>We present an on-line linear time and space algorithm to check if an integer array f is the border array of at least one string w built on a bounded or unbounded size alphabet Σ. First of all, we show a bijection between the border array of a string w and the skeleton of the DFA recognizing Σ*ω, called a string matching automaton (SMA). Different strings can have the same border array but the originality of the presented method is that the correspondence between a border array and a skeleton of SMA is independent from the underlying strings. This enables to design algorithms for validating and generating border arrays that outperform existing ones. The validating algorithm lowers the delay (maximal number of comparisons on one element of the array) from O(|w|) to 1 + min{|Σ|,1 + log2|ω|} compared to existing algorithms. We then give results on the numbers of distinct border arrays depending on the alphabet size. We also present an algorithm that checks if a given directed unlabeled graph G is the skeleton of a SMA on an alphabet of size s in linear time. Along the process the algorithm can build one string w for which G is the SMA skeleton.</description><identifier>ISSN: 0988-3754</identifier><identifier>EISSN: 1290-385X</identifier><identifier>DOI: 10.1051/ita:2008030</identifier><identifier>CODEN: RITAE4</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>68R15 ; 68W05 ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; border ; Combinatorics on words ; Computer Science ; Computer science; control theory; systems ; Data Structures and Algorithms ; Exact sciences and technology ; Functional analysis ; Language theory and syntactical analysis ; Mathematical analysis ; Mathematics ; Miscellaneous ; period ; Sciences and techniques of general use ; string matching ; string matching automata ; Theoretical computing</subject><ispartof>RAIRO. Informatique théorique et applications, 2009-04, Vol.43 (2), p.281-297</ispartof><rights>2009 INIST-CNRS</rights><rights>EDP Sciences, 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-e1dff68b220c549308343f41b9606c21504bf1629a5a563b072de43e4b2be5be3</citedby><cites>FETCH-LOGICAL-c528t-e1dff68b220c549308343f41b9606c21504bf1629a5a563b072de43e4b2be5be3</cites><orcidid>0000-0002-1900-3397 ; 0000-0001-9631-2292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21345995$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00469261$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duval, Jean-Pierre</creatorcontrib><creatorcontrib>Lecroq, Thierry</creatorcontrib><creatorcontrib>Lefebvre, Arnaud</creatorcontrib><title>Efficient validation and construction of border arrays and validation of string matching automata</title><title>RAIRO. Informatique théorique et applications</title><description>We present an on-line linear time and space algorithm to check if an integer array f is the border array of at least one string w built on a bounded or unbounded size alphabet Σ. First of all, we show a bijection between the border array of a string w and the skeleton of the DFA recognizing Σ*ω, called a string matching automaton (SMA). Different strings can have the same border array but the originality of the presented method is that the correspondence between a border array and a skeleton of SMA is independent from the underlying strings. This enables to design algorithms for validating and generating border arrays that outperform existing ones. The validating algorithm lowers the delay (maximal number of comparisons on one element of the array) from O(|w|) to 1 + min{|Σ|,1 + log2|ω|} compared to existing algorithms. We then give results on the numbers of distinct border arrays depending on the alphabet size. We also present an algorithm that checks if a given directed unlabeled graph G is the skeleton of a SMA on an alphabet of size s in linear time. Along the process the algorithm can build one string w for which G is the SMA skeleton.</description><subject>68R15</subject><subject>68W05</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>border</subject><subject>Combinatorics on words</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Data Structures and Algorithms</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Language theory and syntactical analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>period</subject><subject>Sciences and techniques of general use</subject><subject>string matching</subject><subject>string matching automata</subject><subject>Theoretical computing</subject><issn>0988-3754</issn><issn>1290-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90V9rFDEQAPBFFDxrn_wCi6Aisnby95K-ldJa4VQoir6F2WxiU_c2NckW--2b6x2H-GBeksz8ZkiYpnlB4D0BQY5CwWMKoIDBo2ZBqIaOKfHjcbMArVTHloI_bZ7lfA0ApK5Fg2feBxvcVNpbHMOAJcSpxWlobZxySbN9CETf9jENLrWYEt7lB_FXQc1XHKaf7RqLvdoccC6xXvB588TjmN3hbj9ovp2ffT296FZfPnw8PVl1VlBVOkcG76XqKQUruGagGGeek15LkJYSAbz3RFKNAoVkPSzp4DhzvKe9E71jB83bbd8rHM1NCmtMdyZiMBcnK7OJAXCpqSS3pNo3W3uT4u_Z5WLWIVs3jji5OGejgUkiJVNVvv6vZJxTJbWu8OU_8DrOaao_NkprCoxJVtG7LbIp5pyc3z-UgNlM0NQJmt0Eq361a4nZ4ugTTjbkfQkljAutRXXd1oVc3J99HtMvI5d15kbBd3NJP9Nz8WllNLsH08upJg</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Duval, Jean-Pierre</creator><creator>Lecroq, Thierry</creator><creator>Lefebvre, Arnaud</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1900-3397</orcidid><orcidid>https://orcid.org/0000-0001-9631-2292</orcidid></search><sort><creationdate>20090401</creationdate><title>Efficient validation and construction of border arrays and validation of string matching automata</title><author>Duval, Jean-Pierre ; Lecroq, Thierry ; Lefebvre, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-e1dff68b220c549308343f41b9606c21504bf1629a5a563b072de43e4b2be5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>68R15</topic><topic>68W05</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>border</topic><topic>Combinatorics on words</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Data Structures and Algorithms</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Language theory and syntactical analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>period</topic><topic>Sciences and techniques of general use</topic><topic>string matching</topic><topic>string matching automata</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duval, Jean-Pierre</creatorcontrib><creatorcontrib>Lecroq, Thierry</creatorcontrib><creatorcontrib>Lefebvre, Arnaud</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>RAIRO. Informatique théorique et applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duval, Jean-Pierre</au><au>Lecroq, Thierry</au><au>Lefebvre, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient validation and construction of border arrays and validation of string matching automata</atitle><jtitle>RAIRO. Informatique théorique et applications</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>43</volume><issue>2</issue><spage>281</spage><epage>297</epage><pages>281-297</pages><issn>0988-3754</issn><eissn>1290-385X</eissn><coden>RITAE4</coden><abstract>We present an on-line linear time and space algorithm to check if an integer array f is the border array of at least one string w built on a bounded or unbounded size alphabet Σ. First of all, we show a bijection between the border array of a string w and the skeleton of the DFA recognizing Σ*ω, called a string matching automaton (SMA). Different strings can have the same border array but the originality of the presented method is that the correspondence between a border array and a skeleton of SMA is independent from the underlying strings. This enables to design algorithms for validating and generating border arrays that outperform existing ones. The validating algorithm lowers the delay (maximal number of comparisons on one element of the array) from O(|w|) to 1 + min{|Σ|,1 + log2|ω|} compared to existing algorithms. We then give results on the numbers of distinct border arrays depending on the alphabet size. We also present an algorithm that checks if a given directed unlabeled graph G is the skeleton of a SMA on an alphabet of size s in linear time. Along the process the algorithm can build one string w for which G is the SMA skeleton.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/ita:2008030</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1900-3397</orcidid><orcidid>https://orcid.org/0000-0001-9631-2292</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0988-3754 |
ispartof | RAIRO. Informatique théorique et applications, 2009-04, Vol.43 (2), p.281-297 |
issn | 0988-3754 1290-385X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00469261v1 |
source | NUMDAM |
subjects | 68R15 68W05 Algorithmics. Computability. Computer arithmetics Applied sciences border Combinatorics on words Computer Science Computer science control theory systems Data Structures and Algorithms Exact sciences and technology Functional analysis Language theory and syntactical analysis Mathematical analysis Mathematics Miscellaneous period Sciences and techniques of general use string matching string matching automata Theoretical computing |
title | Efficient validation and construction of border arrays and validation of string matching automata |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20validation%20and%20construction%20of%20border%20arrays%20and%20validation%20of%20string%20matching%20automata&rft.jtitle=RAIRO.%20Informatique%20the%CC%81orique%20et%20applications&rft.au=Duval,%20Jean-Pierre&rft.date=2009-04-01&rft.volume=43&rft.issue=2&rft.spage=281&rft.epage=297&rft.pages=281-297&rft.issn=0988-3754&rft.eissn=1290-385X&rft.coden=RITAE4&rft_id=info:doi/10.1051/ita:2008030&rft_dat=%3Cproquest_hal_p%3E903616638%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=899203363&rft_id=info:pmid/&rfr_iscdi=true |