Efficient validation and construction of border arrays and validation of string matching automata

We present an on-line linear time and space algorithm to check if an integer array f is the border array of at least one string w built on a bounded or unbounded size alphabet Σ. First of all, we show a bijection between the border array of a string w and the skeleton of the DFA recognizing Σ*ω, cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RAIRO. Informatique théorique et applications 2009-04, Vol.43 (2), p.281-297
Hauptverfasser: Duval, Jean-Pierre, Lecroq, Thierry, Lefebvre, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 297
container_issue 2
container_start_page 281
container_title RAIRO. Informatique théorique et applications
container_volume 43
creator Duval, Jean-Pierre
Lecroq, Thierry
Lefebvre, Arnaud
description We present an on-line linear time and space algorithm to check if an integer array f is the border array of at least one string w built on a bounded or unbounded size alphabet Σ. First of all, we show a bijection between the border array of a string w and the skeleton of the DFA recognizing Σ*ω, called a string matching automaton (SMA). Different strings can have the same border array but the originality of the presented method is that the correspondence between a border array and a skeleton of SMA is independent from the underlying strings. This enables to design algorithms for validating and generating border arrays that outperform existing ones. The validating algorithm lowers the delay (maximal number of comparisons on one element of the array) from O(|w|) to 1 + min{|Σ|,1 + log2|ω|} compared to existing algorithms. We then give results on the numbers of distinct border arrays depending on the alphabet size. We also present an algorithm that checks if a given directed unlabeled graph G is the skeleton of a SMA on an alphabet of size s in linear time. Along the process the algorithm can build one string w for which G is the SMA skeleton.
doi_str_mv 10.1051/ita:2008030
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00469261v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>903616638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-e1dff68b220c549308343f41b9606c21504bf1629a5a563b072de43e4b2be5be3</originalsourceid><addsrcrecordid>eNp90V9rFDEQAPBFFDxrn_wCi6Aisnby95K-ldJa4VQoir6F2WxiU_c2NckW--2b6x2H-GBeksz8ZkiYpnlB4D0BQY5CwWMKoIDBo2ZBqIaOKfHjcbMArVTHloI_bZ7lfA0ApK5Fg2feBxvcVNpbHMOAJcSpxWlobZxySbN9CETf9jENLrWYEt7lB_FXQc1XHKaf7RqLvdoccC6xXvB588TjmN3hbj9ovp2ffT296FZfPnw8PVl1VlBVOkcG76XqKQUruGagGGeek15LkJYSAbz3RFKNAoVkPSzp4DhzvKe9E71jB83bbd8rHM1NCmtMdyZiMBcnK7OJAXCpqSS3pNo3W3uT4u_Z5WLWIVs3jji5OGejgUkiJVNVvv6vZJxTJbWu8OU_8DrOaao_NkprCoxJVtG7LbIp5pyc3z-UgNlM0NQJmt0Eq361a4nZ4ugTTjbkfQkljAutRXXd1oVc3J99HtMvI5d15kbBd3NJP9Nz8WllNLsH08upJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>899203363</pqid></control><display><type>article</type><title>Efficient validation and construction of border arrays and validation of string matching automata</title><source>NUMDAM</source><creator>Duval, Jean-Pierre ; Lecroq, Thierry ; Lefebvre, Arnaud</creator><creatorcontrib>Duval, Jean-Pierre ; Lecroq, Thierry ; Lefebvre, Arnaud</creatorcontrib><description>We present an on-line linear time and space algorithm to check if an integer array f is the border array of at least one string w built on a bounded or unbounded size alphabet Σ. First of all, we show a bijection between the border array of a string w and the skeleton of the DFA recognizing Σ*ω, called a string matching automaton (SMA). Different strings can have the same border array but the originality of the presented method is that the correspondence between a border array and a skeleton of SMA is independent from the underlying strings. This enables to design algorithms for validating and generating border arrays that outperform existing ones. The validating algorithm lowers the delay (maximal number of comparisons on one element of the array) from O(|w|) to 1 + min{|Σ|,1 + log2|ω|} compared to existing algorithms. We then give results on the numbers of distinct border arrays depending on the alphabet size. We also present an algorithm that checks if a given directed unlabeled graph G is the skeleton of a SMA on an alphabet of size s in linear time. Along the process the algorithm can build one string w for which G is the SMA skeleton.</description><identifier>ISSN: 0988-3754</identifier><identifier>EISSN: 1290-385X</identifier><identifier>DOI: 10.1051/ita:2008030</identifier><identifier>CODEN: RITAE4</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>68R15 ; 68W05 ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; border ; Combinatorics on words ; Computer Science ; Computer science; control theory; systems ; Data Structures and Algorithms ; Exact sciences and technology ; Functional analysis ; Language theory and syntactical analysis ; Mathematical analysis ; Mathematics ; Miscellaneous ; period ; Sciences and techniques of general use ; string matching ; string matching automata ; Theoretical computing</subject><ispartof>RAIRO. Informatique théorique et applications, 2009-04, Vol.43 (2), p.281-297</ispartof><rights>2009 INIST-CNRS</rights><rights>EDP Sciences, 2008</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-e1dff68b220c549308343f41b9606c21504bf1629a5a563b072de43e4b2be5be3</citedby><cites>FETCH-LOGICAL-c528t-e1dff68b220c549308343f41b9606c21504bf1629a5a563b072de43e4b2be5be3</cites><orcidid>0000-0002-1900-3397 ; 0000-0001-9631-2292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21345995$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00469261$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duval, Jean-Pierre</creatorcontrib><creatorcontrib>Lecroq, Thierry</creatorcontrib><creatorcontrib>Lefebvre, Arnaud</creatorcontrib><title>Efficient validation and construction of border arrays and validation of string matching automata</title><title>RAIRO. Informatique théorique et applications</title><description>We present an on-line linear time and space algorithm to check if an integer array f is the border array of at least one string w built on a bounded or unbounded size alphabet Σ. First of all, we show a bijection between the border array of a string w and the skeleton of the DFA recognizing Σ*ω, called a string matching automaton (SMA). Different strings can have the same border array but the originality of the presented method is that the correspondence between a border array and a skeleton of SMA is independent from the underlying strings. This enables to design algorithms for validating and generating border arrays that outperform existing ones. The validating algorithm lowers the delay (maximal number of comparisons on one element of the array) from O(|w|) to 1 + min{|Σ|,1 + log2|ω|} compared to existing algorithms. We then give results on the numbers of distinct border arrays depending on the alphabet size. We also present an algorithm that checks if a given directed unlabeled graph G is the skeleton of a SMA on an alphabet of size s in linear time. Along the process the algorithm can build one string w for which G is the SMA skeleton.</description><subject>68R15</subject><subject>68W05</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>border</subject><subject>Combinatorics on words</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Data Structures and Algorithms</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Language theory and syntactical analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>period</subject><subject>Sciences and techniques of general use</subject><subject>string matching</subject><subject>string matching automata</subject><subject>Theoretical computing</subject><issn>0988-3754</issn><issn>1290-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90V9rFDEQAPBFFDxrn_wCi6Aisnby95K-ldJa4VQoir6F2WxiU_c2NckW--2b6x2H-GBeksz8ZkiYpnlB4D0BQY5CwWMKoIDBo2ZBqIaOKfHjcbMArVTHloI_bZ7lfA0ApK5Fg2feBxvcVNpbHMOAJcSpxWlobZxySbN9CETf9jENLrWYEt7lB_FXQc1XHKaf7RqLvdoccC6xXvB588TjmN3hbj9ovp2ffT296FZfPnw8PVl1VlBVOkcG76XqKQUruGagGGeek15LkJYSAbz3RFKNAoVkPSzp4DhzvKe9E71jB83bbd8rHM1NCmtMdyZiMBcnK7OJAXCpqSS3pNo3W3uT4u_Z5WLWIVs3jji5OGejgUkiJVNVvv6vZJxTJbWu8OU_8DrOaao_NkprCoxJVtG7LbIp5pyc3z-UgNlM0NQJmt0Eq361a4nZ4ugTTjbkfQkljAutRXXd1oVc3J99HtMvI5d15kbBd3NJP9Nz8WllNLsH08upJg</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Duval, Jean-Pierre</creator><creator>Lecroq, Thierry</creator><creator>Lefebvre, Arnaud</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1900-3397</orcidid><orcidid>https://orcid.org/0000-0001-9631-2292</orcidid></search><sort><creationdate>20090401</creationdate><title>Efficient validation and construction of border arrays and validation of string matching automata</title><author>Duval, Jean-Pierre ; Lecroq, Thierry ; Lefebvre, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-e1dff68b220c549308343f41b9606c21504bf1629a5a563b072de43e4b2be5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>68R15</topic><topic>68W05</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>border</topic><topic>Combinatorics on words</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Data Structures and Algorithms</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Language theory and syntactical analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>period</topic><topic>Sciences and techniques of general use</topic><topic>string matching</topic><topic>string matching automata</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duval, Jean-Pierre</creatorcontrib><creatorcontrib>Lecroq, Thierry</creatorcontrib><creatorcontrib>Lefebvre, Arnaud</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>RAIRO. Informatique théorique et applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duval, Jean-Pierre</au><au>Lecroq, Thierry</au><au>Lefebvre, Arnaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient validation and construction of border arrays and validation of string matching automata</atitle><jtitle>RAIRO. Informatique théorique et applications</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>43</volume><issue>2</issue><spage>281</spage><epage>297</epage><pages>281-297</pages><issn>0988-3754</issn><eissn>1290-385X</eissn><coden>RITAE4</coden><abstract>We present an on-line linear time and space algorithm to check if an integer array f is the border array of at least one string w built on a bounded or unbounded size alphabet Σ. First of all, we show a bijection between the border array of a string w and the skeleton of the DFA recognizing Σ*ω, called a string matching automaton (SMA). Different strings can have the same border array but the originality of the presented method is that the correspondence between a border array and a skeleton of SMA is independent from the underlying strings. This enables to design algorithms for validating and generating border arrays that outperform existing ones. The validating algorithm lowers the delay (maximal number of comparisons on one element of the array) from O(|w|) to 1 + min{|Σ|,1 + log2|ω|} compared to existing algorithms. We then give results on the numbers of distinct border arrays depending on the alphabet size. We also present an algorithm that checks if a given directed unlabeled graph G is the skeleton of a SMA on an alphabet of size s in linear time. Along the process the algorithm can build one string w for which G is the SMA skeleton.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/ita:2008030</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1900-3397</orcidid><orcidid>https://orcid.org/0000-0001-9631-2292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0988-3754
ispartof RAIRO. Informatique théorique et applications, 2009-04, Vol.43 (2), p.281-297
issn 0988-3754
1290-385X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00469261v1
source NUMDAM
subjects 68R15
68W05
Algorithmics. Computability. Computer arithmetics
Applied sciences
border
Combinatorics on words
Computer Science
Computer science
control theory
systems
Data Structures and Algorithms
Exact sciences and technology
Functional analysis
Language theory and syntactical analysis
Mathematical analysis
Mathematics
Miscellaneous
period
Sciences and techniques of general use
string matching
string matching automata
Theoretical computing
title Efficient validation and construction of border arrays and validation of string matching automata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20validation%20and%20construction%20of%20border%20arrays%20and%20validation%20of%20string%20matching%20automata&rft.jtitle=RAIRO.%20Informatique%20the%CC%81orique%20et%20applications&rft.au=Duval,%20Jean-Pierre&rft.date=2009-04-01&rft.volume=43&rft.issue=2&rft.spage=281&rft.epage=297&rft.pages=281-297&rft.issn=0988-3754&rft.eissn=1290-385X&rft.coden=RITAE4&rft_id=info:doi/10.1051/ita:2008030&rft_dat=%3Cproquest_hal_p%3E903616638%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=899203363&rft_id=info:pmid/&rfr_iscdi=true