Lifetime prediction of 9–12%Cr martensitic steels subjected to creep–fatigue at high temperature

A physically-based model has been proposed in a previous study to predict the creep–fatigue lifetime of P91 steel which is of the 9–12%Cr steels family (Fournier et al., 2008) [1]. The present study applies this model to three other different 9–12%Cr martensitic steels P92, Ti1, and VY2. All these m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2010-06, Vol.32 (6), p.971-978
Hauptverfasser: Fournier, B., Salvi, M., Dalle, F., De Carlan, Y., Caës, C., Sauzay, M., Pineau, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 978
container_issue 6
container_start_page 971
container_title International journal of fatigue
container_volume 32
creator Fournier, B.
Salvi, M.
Dalle, F.
De Carlan, Y.
Caës, C.
Sauzay, M.
Pineau, A.
description A physically-based model has been proposed in a previous study to predict the creep–fatigue lifetime of P91 steel which is of the 9–12%Cr steels family (Fournier et al., 2008) [1]. The present study applies this model to three other different 9–12%Cr martensitic steels P92, Ti1, and VY2. All these materials were tested under pure fatigue conditions. Whereas for a P92 steel, the experimental lifetimes are very close to those of the P91 steel, the two other steels present a significantly shorter fatigue and creep–fatigue lifetime. First the damage mechanisms were observed on these three materials and compared to those identified on P91. Taking into account the increased cracks density and the grain size effect on crack initiation, the model is able to account quite accurately for these different fatigue and creep–fatigue lifetimes.
doi_str_mv 10.1016/j.ijfatigue.2009.10.017
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00461460v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014211230900320X</els_id><sourcerecordid>753736921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-a4675f5e8bba0a43fabfbd29a8e41308b388b26a6147176cc9cf7af09a4d25553</originalsourceid><addsrcrecordid>eNqFkc9q3DAQxkVpods0zxBdQunBW_2zZR-XpWkKC72kZzGWR1kZr-1KcqC3vkPesE9SmV322tPAzO-b-ZiPkDvOtpzx6ku_9b2D5J8X3ArGmtzdMq7fkA2vdVNIVYq3ZMO4EgXnQr4nH2LsWQaZLjekO3iHyZ-QzgE7b5OfRjo52vz988rF_T7QE4SEY_TJWxoT4hBpXNoebcKOponagDhn-uKBQqJH_3ykCU8zBkhLwI_knYMh4u2l3pCfD1-f9o_F4ce37_vdobCK81SAqnTpSqzbFhgo6aB1bScaqFFxyepW1nUrKqi40lxX1jbWaXCsAdWJsizlDfl83nuEwczBZ-u_zQTePO4OZu0xprK4Yi88s5_O7BymXwvGZE4-WhwGGHFaotGl1LJqxErqM2nDFGNAd13NmVkjML25RmDWCNZBjiAr7y83IFoYXIDR-niVi2y6ElJkbnfm8nPxxWMw0XocbQ4k5D-bbvL_vfUPuvWiug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753736921</pqid></control><display><type>article</type><title>Lifetime prediction of 9–12%Cr martensitic steels subjected to creep–fatigue at high temperature</title><source>Elsevier ScienceDirect Journals</source><creator>Fournier, B. ; Salvi, M. ; Dalle, F. ; De Carlan, Y. ; Caës, C. ; Sauzay, M. ; Pineau, A.</creator><creatorcontrib>Fournier, B. ; Salvi, M. ; Dalle, F. ; De Carlan, Y. ; Caës, C. ; Sauzay, M. ; Pineau, A.</creatorcontrib><description>A physically-based model has been proposed in a previous study to predict the creep–fatigue lifetime of P91 steel which is of the 9–12%Cr steels family (Fournier et al., 2008) [1]. The present study applies this model to three other different 9–12%Cr martensitic steels P92, Ti1, and VY2. All these materials were tested under pure fatigue conditions. Whereas for a P92 steel, the experimental lifetimes are very close to those of the P91 steel, the two other steels present a significantly shorter fatigue and creep–fatigue lifetime. First the damage mechanisms were observed on these three materials and compared to those identified on P91. Taking into account the increased cracks density and the grain size effect on crack initiation, the model is able to account quite accurately for these different fatigue and creep–fatigue lifetimes.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2009.10.017</identifier><identifier>CODEN: IJFADB</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Chromium molybdenum vanadium steels ; Chromium steels ; Crack initiation ; Creep ; Creep–fatigue ; Damage mechanisms ; Density ; Engineering Sciences ; Exact sciences and technology ; Fatigue ; Fatigue (materials) ; Fatigue failure ; Fatigue tests ; Ferritic stainless steels ; Grain size effect ; Heat resistant steels ; High strength steels ; High temperature ; Martensitic stainless steels ; Martensitic steels ; Materials ; Mathematical models ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; P92 ; Steels</subject><ispartof>International journal of fatigue, 2010-06, Vol.32 (6), p.971-978</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-a4675f5e8bba0a43fabfbd29a8e41308b388b26a6147176cc9cf7af09a4d25553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014211230900320X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23911,23912,25120,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22556232$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://minesparis-psl.hal.science/hal-00461460$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fournier, B.</creatorcontrib><creatorcontrib>Salvi, M.</creatorcontrib><creatorcontrib>Dalle, F.</creatorcontrib><creatorcontrib>De Carlan, Y.</creatorcontrib><creatorcontrib>Caës, C.</creatorcontrib><creatorcontrib>Sauzay, M.</creatorcontrib><creatorcontrib>Pineau, A.</creatorcontrib><title>Lifetime prediction of 9–12%Cr martensitic steels subjected to creep–fatigue at high temperature</title><title>International journal of fatigue</title><description>A physically-based model has been proposed in a previous study to predict the creep–fatigue lifetime of P91 steel which is of the 9–12%Cr steels family (Fournier et al., 2008) [1]. The present study applies this model to three other different 9–12%Cr martensitic steels P92, Ti1, and VY2. All these materials were tested under pure fatigue conditions. Whereas for a P92 steel, the experimental lifetimes are very close to those of the P91 steel, the two other steels present a significantly shorter fatigue and creep–fatigue lifetime. First the damage mechanisms were observed on these three materials and compared to those identified on P91. Taking into account the increased cracks density and the grain size effect on crack initiation, the model is able to account quite accurately for these different fatigue and creep–fatigue lifetimes.</description><subject>Applied sciences</subject><subject>Chromium molybdenum vanadium steels</subject><subject>Chromium steels</subject><subject>Crack initiation</subject><subject>Creep</subject><subject>Creep–fatigue</subject><subject>Damage mechanisms</subject><subject>Density</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue (materials)</subject><subject>Fatigue failure</subject><subject>Fatigue tests</subject><subject>Ferritic stainless steels</subject><subject>Grain size effect</subject><subject>Heat resistant steels</subject><subject>High strength steels</subject><subject>High temperature</subject><subject>Martensitic stainless steels</subject><subject>Martensitic steels</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>P92</subject><subject>Steels</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkc9q3DAQxkVpods0zxBdQunBW_2zZR-XpWkKC72kZzGWR1kZr-1KcqC3vkPesE9SmV322tPAzO-b-ZiPkDvOtpzx6ku_9b2D5J8X3ArGmtzdMq7fkA2vdVNIVYq3ZMO4EgXnQr4nH2LsWQaZLjekO3iHyZ-QzgE7b5OfRjo52vz988rF_T7QE4SEY_TJWxoT4hBpXNoebcKOponagDhn-uKBQqJH_3ykCU8zBkhLwI_knYMh4u2l3pCfD1-f9o_F4ce37_vdobCK81SAqnTpSqzbFhgo6aB1bScaqFFxyepW1nUrKqi40lxX1jbWaXCsAdWJsizlDfl83nuEwczBZ-u_zQTePO4OZu0xprK4Yi88s5_O7BymXwvGZE4-WhwGGHFaotGl1LJqxErqM2nDFGNAd13NmVkjML25RmDWCNZBjiAr7y83IFoYXIDR-niVi2y6ElJkbnfm8nPxxWMw0XocbQ4k5D-bbvL_vfUPuvWiug</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Fournier, B.</creator><creator>Salvi, M.</creator><creator>Dalle, F.</creator><creator>De Carlan, Y.</creator><creator>Caës, C.</creator><creator>Sauzay, M.</creator><creator>Pineau, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope></search><sort><creationdate>20100601</creationdate><title>Lifetime prediction of 9–12%Cr martensitic steels subjected to creep–fatigue at high temperature</title><author>Fournier, B. ; Salvi, M. ; Dalle, F. ; De Carlan, Y. ; Caës, C. ; Sauzay, M. ; Pineau, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-a4675f5e8bba0a43fabfbd29a8e41308b388b26a6147176cc9cf7af09a4d25553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Chromium molybdenum vanadium steels</topic><topic>Chromium steels</topic><topic>Crack initiation</topic><topic>Creep</topic><topic>Creep–fatigue</topic><topic>Damage mechanisms</topic><topic>Density</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue (materials)</topic><topic>Fatigue failure</topic><topic>Fatigue tests</topic><topic>Ferritic stainless steels</topic><topic>Grain size effect</topic><topic>Heat resistant steels</topic><topic>High strength steels</topic><topic>High temperature</topic><topic>Martensitic stainless steels</topic><topic>Martensitic steels</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>P92</topic><topic>Steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fournier, B.</creatorcontrib><creatorcontrib>Salvi, M.</creatorcontrib><creatorcontrib>Dalle, F.</creatorcontrib><creatorcontrib>De Carlan, Y.</creatorcontrib><creatorcontrib>Caës, C.</creatorcontrib><creatorcontrib>Sauzay, M.</creatorcontrib><creatorcontrib>Pineau, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fournier, B.</au><au>Salvi, M.</au><au>Dalle, F.</au><au>De Carlan, Y.</au><au>Caës, C.</au><au>Sauzay, M.</au><au>Pineau, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifetime prediction of 9–12%Cr martensitic steels subjected to creep–fatigue at high temperature</atitle><jtitle>International journal of fatigue</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>32</volume><issue>6</issue><spage>971</spage><epage>978</epage><pages>971-978</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><coden>IJFADB</coden><abstract>A physically-based model has been proposed in a previous study to predict the creep–fatigue lifetime of P91 steel which is of the 9–12%Cr steels family (Fournier et al., 2008) [1]. The present study applies this model to three other different 9–12%Cr martensitic steels P92, Ti1, and VY2. All these materials were tested under pure fatigue conditions. Whereas for a P92 steel, the experimental lifetimes are very close to those of the P91 steel, the two other steels present a significantly shorter fatigue and creep–fatigue lifetime. First the damage mechanisms were observed on these three materials and compared to those identified on P91. Taking into account the increased cracks density and the grain size effect on crack initiation, the model is able to account quite accurately for these different fatigue and creep–fatigue lifetimes.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2009.10.017</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2010-06, Vol.32 (6), p.971-978
issn 0142-1123
1879-3452
language eng
recordid cdi_hal_primary_oai_HAL_hal_00461460v1
source Elsevier ScienceDirect Journals
subjects Applied sciences
Chromium molybdenum vanadium steels
Chromium steels
Crack initiation
Creep
Creep–fatigue
Damage mechanisms
Density
Engineering Sciences
Exact sciences and technology
Fatigue
Fatigue (materials)
Fatigue failure
Fatigue tests
Ferritic stainless steels
Grain size effect
Heat resistant steels
High strength steels
High temperature
Martensitic stainless steels
Martensitic steels
Materials
Mathematical models
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
P92
Steels
title Lifetime prediction of 9–12%Cr martensitic steels subjected to creep–fatigue at high temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifetime%20prediction%20of%209%E2%80%9312%25Cr%20martensitic%20steels%20subjected%20to%20creep%E2%80%93fatigue%20at%20high%20temperature&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Fournier,%20B.&rft.date=2010-06-01&rft.volume=32&rft.issue=6&rft.spage=971&rft.epage=978&rft.pages=971-978&rft.issn=0142-1123&rft.eissn=1879-3452&rft.coden=IJFADB&rft_id=info:doi/10.1016/j.ijfatigue.2009.10.017&rft_dat=%3Cproquest_hal_p%3E753736921%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753736921&rft_id=info:pmid/&rft_els_id=S014211230900320X&rfr_iscdi=true