Asymptotic properties of infinite Leslie matrices

The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133–137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2009-01, Vol.256 (2), p.157-163
Hauptverfasser: Gosselin, Frédéric, Lebreton, Jean-Dominique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue 2
container_start_page 157
container_title Journal of theoretical biology
container_volume 256
creator Gosselin, Frédéric
Lebreton, Jean-Dominique
description The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133–137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, Demetrius had to assume that the survival probability per time step tends to 0 with age. We generalise here the conditions of application of the stable population theory to infinite Leslie matrix models and apply these results to two examples, including or not senescence.
doi_str_mv 10.1016/j.jtbi.2008.09.018
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00454506v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519308004906</els_id><sourcerecordid>66780285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-653ccbc81120d52a7ba85eec37c10b22ed4925ebc2d14fb06fdb0d2c60d140b03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6BzxIT4KH1knadFvwsizqCgUveg5NOsWUfplkF_bfm9JFb56GGZ73hXkIuaUQUaDpYxM1TuqIAWQR5BHQ7IwsKeQ8zHhCz8kSgLGQ0zxekCtrGwDIkzi9JAua5RzSJF4SurHHbnSD0yoYzTCicRptMNSB7mvda4dBgbbVGHSlM1qhvSYXddlavDnNFfl8ef7Y7sLi_fVtuylClcTMhSmPlZIqo5RBxVm5lmXGEVW8VhQkY1glOeMoFatoUktI60pCxVQKfgcJ8Yo8zL1fZStGo7vSHMVQarHbFGK6ASQ88W8cqGfvZ9a_8L1H60SnrcK2LXsc9lak6ToDlnEPshlUZrDWYP3bTEFMUkUjJqlikiogF16qD92d2veyw-ovcrLogacZQO_joNEIqzT2CittUDlRDfq__h-W5Ide</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66780285</pqid></control><display><type>article</type><title>Asymptotic properties of infinite Leslie matrices</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gosselin, Frédéric ; Lebreton, Jean-Dominique</creator><creatorcontrib>Gosselin, Frédéric ; Lebreton, Jean-Dominique</creatorcontrib><description>The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133–137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, Demetrius had to assume that the survival probability per time step tends to 0 with age. We generalise here the conditions of application of the stable population theory to infinite Leslie matrix models and apply these results to two examples, including or not senescence.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2008.09.018</identifier><identifier>PMID: 18950643</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Age Distribution ; Demography ; Dynamical Systems ; Environmental Sciences ; Humanities and Social Sciences ; Humans ; Infinite matrix ; Leslie matrix ; Longevity ; Mathematics ; Models, Biological ; Population Growth ; Reproduction ; Senescence ; Stable population theory ; Survival Rate ; Usher matrix</subject><ispartof>Journal of theoretical biology, 2009-01, Vol.256 (2), p.157-163</ispartof><rights>2008 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-653ccbc81120d52a7ba85eec37c10b22ed4925ebc2d14fb06fdb0d2c60d140b03</citedby><cites>FETCH-LOGICAL-c432t-653ccbc81120d52a7ba85eec37c10b22ed4925ebc2d14fb06fdb0d2c60d140b03</cites><orcidid>0000-0003-3737-106X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2008.09.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18950643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00454506$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gosselin, Frédéric</creatorcontrib><creatorcontrib>Lebreton, Jean-Dominique</creatorcontrib><title>Asymptotic properties of infinite Leslie matrices</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133–137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, Demetrius had to assume that the survival probability per time step tends to 0 with age. We generalise here the conditions of application of the stable population theory to infinite Leslie matrix models and apply these results to two examples, including or not senescence.</description><subject>Age Distribution</subject><subject>Demography</subject><subject>Dynamical Systems</subject><subject>Environmental Sciences</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Infinite matrix</subject><subject>Leslie matrix</subject><subject>Longevity</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Population Growth</subject><subject>Reproduction</subject><subject>Senescence</subject><subject>Stable population theory</subject><subject>Survival Rate</subject><subject>Usher matrix</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7rr6BzxIT4KH1knadFvwsizqCgUveg5NOsWUfplkF_bfm9JFb56GGZ73hXkIuaUQUaDpYxM1TuqIAWQR5BHQ7IwsKeQ8zHhCz8kSgLGQ0zxekCtrGwDIkzi9JAua5RzSJF4SurHHbnSD0yoYzTCicRptMNSB7mvda4dBgbbVGHSlM1qhvSYXddlavDnNFfl8ef7Y7sLi_fVtuylClcTMhSmPlZIqo5RBxVm5lmXGEVW8VhQkY1glOeMoFatoUktI60pCxVQKfgcJ8Yo8zL1fZStGo7vSHMVQarHbFGK6ASQ88W8cqGfvZ9a_8L1H60SnrcK2LXsc9lak6ToDlnEPshlUZrDWYP3bTEFMUkUjJqlikiogF16qD92d2veyw-ovcrLogacZQO_joNEIqzT2CittUDlRDfq__h-W5Ide</recordid><startdate>20090121</startdate><enddate>20090121</enddate><creator>Gosselin, Frédéric</creator><creator>Lebreton, Jean-Dominique</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3737-106X</orcidid></search><sort><creationdate>20090121</creationdate><title>Asymptotic properties of infinite Leslie matrices</title><author>Gosselin, Frédéric ; Lebreton, Jean-Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-653ccbc81120d52a7ba85eec37c10b22ed4925ebc2d14fb06fdb0d2c60d140b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Age Distribution</topic><topic>Demography</topic><topic>Dynamical Systems</topic><topic>Environmental Sciences</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Infinite matrix</topic><topic>Leslie matrix</topic><topic>Longevity</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Population Growth</topic><topic>Reproduction</topic><topic>Senescence</topic><topic>Stable population theory</topic><topic>Survival Rate</topic><topic>Usher matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gosselin, Frédéric</creatorcontrib><creatorcontrib>Lebreton, Jean-Dominique</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gosselin, Frédéric</au><au>Lebreton, Jean-Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic properties of infinite Leslie matrices</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2009-01-21</date><risdate>2009</risdate><volume>256</volume><issue>2</issue><spage>157</spage><epage>163</epage><pages>157-163</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133–137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, Demetrius had to assume that the survival probability per time step tends to 0 with age. We generalise here the conditions of application of the stable population theory to infinite Leslie matrix models and apply these results to two examples, including or not senescence.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18950643</pmid><doi>10.1016/j.jtbi.2008.09.018</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3737-106X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2009-01, Vol.256 (2), p.157-163
issn 0022-5193
1095-8541
language eng
recordid cdi_hal_primary_oai_HAL_hal_00454506v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Age Distribution
Demography
Dynamical Systems
Environmental Sciences
Humanities and Social Sciences
Humans
Infinite matrix
Leslie matrix
Longevity
Mathematics
Models, Biological
Population Growth
Reproduction
Senescence
Stable population theory
Survival Rate
Usher matrix
title Asymptotic properties of infinite Leslie matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20properties%20of%20infinite%20Leslie%20matrices&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Gosselin,%20Fr%C3%A9d%C3%A9ric&rft.date=2009-01-21&rft.volume=256&rft.issue=2&rft.spage=157&rft.epage=163&rft.pages=157-163&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2008.09.018&rft_dat=%3Cproquest_hal_p%3E66780285%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66780285&rft_id=info:pmid/18950643&rft_els_id=S0022519308004906&rfr_iscdi=true