Asymptotic properties of infinite Leslie matrices
The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133–137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2009-01, Vol.256 (2), p.157-163 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | 2 |
container_start_page | 157 |
container_title | Journal of theoretical biology |
container_volume | 256 |
creator | Gosselin, Frédéric Lebreton, Jean-Dominique |
description | The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133–137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, Demetrius had to assume that the survival probability per time step tends to 0 with age. We generalise here the conditions of application of the stable population theory to infinite Leslie matrix models and apply these results to two examples, including or not senescence. |
doi_str_mv | 10.1016/j.jtbi.2008.09.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00454506v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519308004906</els_id><sourcerecordid>66780285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-653ccbc81120d52a7ba85eec37c10b22ed4925ebc2d14fb06fdb0d2c60d140b03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6BzxIT4KH1knadFvwsizqCgUveg5NOsWUfplkF_bfm9JFb56GGZ73hXkIuaUQUaDpYxM1TuqIAWQR5BHQ7IwsKeQ8zHhCz8kSgLGQ0zxekCtrGwDIkzi9JAua5RzSJF4SurHHbnSD0yoYzTCicRptMNSB7mvda4dBgbbVGHSlM1qhvSYXddlavDnNFfl8ef7Y7sLi_fVtuylClcTMhSmPlZIqo5RBxVm5lmXGEVW8VhQkY1glOeMoFatoUktI60pCxVQKfgcJ8Yo8zL1fZStGo7vSHMVQarHbFGK6ASQ88W8cqGfvZ9a_8L1H60SnrcK2LXsc9lak6ToDlnEPshlUZrDWYP3bTEFMUkUjJqlikiogF16qD92d2veyw-ovcrLogacZQO_joNEIqzT2CittUDlRDfq__h-W5Ide</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66780285</pqid></control><display><type>article</type><title>Asymptotic properties of infinite Leslie matrices</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gosselin, Frédéric ; Lebreton, Jean-Dominique</creator><creatorcontrib>Gosselin, Frédéric ; Lebreton, Jean-Dominique</creatorcontrib><description>The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133–137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, Demetrius had to assume that the survival probability per time step tends to 0 with age. We generalise here the conditions of application of the stable population theory to infinite Leslie matrix models and apply these results to two examples, including or not senescence.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2008.09.018</identifier><identifier>PMID: 18950643</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Age Distribution ; Demography ; Dynamical Systems ; Environmental Sciences ; Humanities and Social Sciences ; Humans ; Infinite matrix ; Leslie matrix ; Longevity ; Mathematics ; Models, Biological ; Population Growth ; Reproduction ; Senescence ; Stable population theory ; Survival Rate ; Usher matrix</subject><ispartof>Journal of theoretical biology, 2009-01, Vol.256 (2), p.157-163</ispartof><rights>2008 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-653ccbc81120d52a7ba85eec37c10b22ed4925ebc2d14fb06fdb0d2c60d140b03</citedby><cites>FETCH-LOGICAL-c432t-653ccbc81120d52a7ba85eec37c10b22ed4925ebc2d14fb06fdb0d2c60d140b03</cites><orcidid>0000-0003-3737-106X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2008.09.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18950643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00454506$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gosselin, Frédéric</creatorcontrib><creatorcontrib>Lebreton, Jean-Dominique</creatorcontrib><title>Asymptotic properties of infinite Leslie matrices</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133–137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, Demetrius had to assume that the survival probability per time step tends to 0 with age. We generalise here the conditions of application of the stable population theory to infinite Leslie matrix models and apply these results to two examples, including or not senescence.</description><subject>Age Distribution</subject><subject>Demography</subject><subject>Dynamical Systems</subject><subject>Environmental Sciences</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Infinite matrix</subject><subject>Leslie matrix</subject><subject>Longevity</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Population Growth</subject><subject>Reproduction</subject><subject>Senescence</subject><subject>Stable population theory</subject><subject>Survival Rate</subject><subject>Usher matrix</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7rr6BzxIT4KH1knadFvwsizqCgUveg5NOsWUfplkF_bfm9JFb56GGZ73hXkIuaUQUaDpYxM1TuqIAWQR5BHQ7IwsKeQ8zHhCz8kSgLGQ0zxekCtrGwDIkzi9JAua5RzSJF4SurHHbnSD0yoYzTCicRptMNSB7mvda4dBgbbVGHSlM1qhvSYXddlavDnNFfl8ef7Y7sLi_fVtuylClcTMhSmPlZIqo5RBxVm5lmXGEVW8VhQkY1glOeMoFatoUktI60pCxVQKfgcJ8Yo8zL1fZStGo7vSHMVQarHbFGK6ASQ88W8cqGfvZ9a_8L1H60SnrcK2LXsc9lak6ToDlnEPshlUZrDWYP3bTEFMUkUjJqlikiogF16qD92d2veyw-ovcrLogacZQO_joNEIqzT2CittUDlRDfq__h-W5Ide</recordid><startdate>20090121</startdate><enddate>20090121</enddate><creator>Gosselin, Frédéric</creator><creator>Lebreton, Jean-Dominique</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3737-106X</orcidid></search><sort><creationdate>20090121</creationdate><title>Asymptotic properties of infinite Leslie matrices</title><author>Gosselin, Frédéric ; Lebreton, Jean-Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-653ccbc81120d52a7ba85eec37c10b22ed4925ebc2d14fb06fdb0d2c60d140b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Age Distribution</topic><topic>Demography</topic><topic>Dynamical Systems</topic><topic>Environmental Sciences</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Infinite matrix</topic><topic>Leslie matrix</topic><topic>Longevity</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Population Growth</topic><topic>Reproduction</topic><topic>Senescence</topic><topic>Stable population theory</topic><topic>Survival Rate</topic><topic>Usher matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gosselin, Frédéric</creatorcontrib><creatorcontrib>Lebreton, Jean-Dominique</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gosselin, Frédéric</au><au>Lebreton, Jean-Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic properties of infinite Leslie matrices</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2009-01-21</date><risdate>2009</risdate><volume>256</volume><issue>2</issue><spage>157</spage><epage>163</epage><pages>157-163</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133–137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, Demetrius had to assume that the survival probability per time step tends to 0 with age. We generalise here the conditions of application of the stable population theory to infinite Leslie matrix models and apply these results to two examples, including or not senescence.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18950643</pmid><doi>10.1016/j.jtbi.2008.09.018</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3737-106X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2009-01, Vol.256 (2), p.157-163 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00454506v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Age Distribution Demography Dynamical Systems Environmental Sciences Humanities and Social Sciences Humans Infinite matrix Leslie matrix Longevity Mathematics Models, Biological Population Growth Reproduction Senescence Stable population theory Survival Rate Usher matrix |
title | Asymptotic properties of infinite Leslie matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20properties%20of%20infinite%20Leslie%20matrices&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Gosselin,%20Fr%C3%A9d%C3%A9ric&rft.date=2009-01-21&rft.volume=256&rft.issue=2&rft.spage=157&rft.epage=163&rft.pages=157-163&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2008.09.018&rft_dat=%3Cproquest_hal_p%3E66780285%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66780285&rft_id=info:pmid/18950643&rft_els_id=S0022519308004906&rfr_iscdi=true |