Random data Cauchy theory for supercritical wave equations II: a global existence result

We prove that the subquartic wave equation on the three dimensional ball Θ, with Dirichlet boundary conditions admits global strong solutions for a large set of random supercritical initial data in . We obtain this result as a consequence of a general random data Cauchy theory for supercritical wave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2008-09, Vol.173 (3), p.477-496
Hauptverfasser: Burq, Nicolas, Tzvetkov, Nikolay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the subquartic wave equation on the three dimensional ball Θ, with Dirichlet boundary conditions admits global strong solutions for a large set of random supercritical initial data in . We obtain this result as a consequence of a general random data Cauchy theory for supercritical wave equations developed in our previous work [6] and invariant measure considerations, inspired by earlier works by Bourgain [2, 3] on the non linear Schrödinger equation, which allow us to obtain also precise large time dynamical informations on our solutions.
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-008-0123-0