Random data Cauchy theory for supercritical wave equations II: a global existence result
We prove that the subquartic wave equation on the three dimensional ball Θ, with Dirichlet boundary conditions admits global strong solutions for a large set of random supercritical initial data in . We obtain this result as a consequence of a general random data Cauchy theory for supercritical wave...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2008-09, Vol.173 (3), p.477-496 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the subquartic wave equation on the three dimensional ball Θ, with Dirichlet boundary conditions admits global strong solutions for a large set of random supercritical initial data in
. We obtain this result as a consequence of a general random data Cauchy theory for supercritical wave equations developed in our previous work [6] and invariant measure considerations, inspired by earlier works by Bourgain [2, 3] on the non linear Schrödinger equation, which allow us to obtain also precise large time dynamical informations on our solutions. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-008-0123-0 |