ON THE MAXIMIZATION OF A CLASS OF FUNCTIONALS ON CONVEX REGIONS, AND THE CHARACTERIZATION OF THE FARTHEST CONVEX SET

This article considers a family of functionals J to be maximized over the planar convex sets K for which the perimeter and Steiner point have been fixed. Assuming that J is the integral of a positive quadratic expression in the support function h and its derivative, the maximizer is always either a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematika 2010-07, Vol.56 (2), p.245-265
Hauptverfasser: Harrell II, Evans M., Henrot, Antoine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 2
container_start_page 245
container_title Mathematika
container_volume 56
creator Harrell II, Evans M.
Henrot, Antoine
description This article considers a family of functionals J to be maximized over the planar convex sets K for which the perimeter and Steiner point have been fixed. Assuming that J is the integral of a positive quadratic expression in the support function h and its derivative, the maximizer is always either a triangle or a line segment (which can be considered as a collapsed triangle). Among the concrete consequences of the main theorem is the fact that, given any convex body K1 of finite perimeter, the set in this class that is farthest away in the sense of the L2 distance is always a line segment. The same property is proved for the Hausdorff distance.
doi_str_mv 10.1112/S0025579310000495
format Article
fullrecord <record><control><sourceid>cambridge_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00443862v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0025579310000495</cupid><sourcerecordid>10_1112_S0025579310000495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4645-9fe7bdcd258247b4b5ddb9ef71e261ba531596c39f40e3e13bed741ff61b75a23</originalsourceid><addsrcrecordid>eNqFUFtPwjAUbowmIvoDfNuridNeV_bYzMHAsUVWCPGl2VinQxSz4YV_bydITDTal9Pz3XLyAXCK4AVCCF8mEGLGuEsQNI-6bA-0MKTI5i7F-6DV0HbDH4Kjup5DyJwORS2wiiNLBr41FNP-sH8rZN8AcdcSlheKJGm-3XHkNbAIzRpZXhxN_Kk18nsGS84tEV19JniBGAlP-qNvKQ3eFSMzEvllTHx5DA6KdFHrk-1sg3HXl15gh3Gv74nQnlGHMtstNM_yWY5ZB1Oe0YzleebqgiONHZSljCDmOjPiFhRqohHJdM4pKgpDcpZi0gZnm9z7dKGeq_IxrdZqmZYqEKFqMNMUJR0HvyKjRRvtrFrWdaWLnQFB1VSsflRsPN7G81Yu9Pp_gxrK699S7E1KWa_0-y4lrR6UwwlnyundKDmYDAd8QpQ0erK9NH3MqjK_02q-fKmeTJN_3PoB4XWUEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON THE MAXIMIZATION OF A CLASS OF FUNCTIONALS ON CONVEX REGIONS, AND THE CHARACTERIZATION OF THE FARTHEST CONVEX SET</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Harrell II, Evans M. ; Henrot, Antoine</creator><creatorcontrib>Harrell II, Evans M. ; Henrot, Antoine</creatorcontrib><description>This article considers a family of functionals J to be maximized over the planar convex sets K for which the perimeter and Steiner point have been fixed. Assuming that J is the integral of a positive quadratic expression in the support function h and its derivative, the maximizer is always either a triangle or a line segment (which can be considered as a collapsed triangle). Among the concrete consequences of the main theorem is the fact that, given any convex body K1 of finite perimeter, the set in this class that is farthest away in the sense of the L2 distance is always a line segment. The same property is proved for the Hausdorff distance.</description><identifier>ISSN: 0025-5793</identifier><identifier>EISSN: 2041-7942</identifier><identifier>DOI: 10.1112/S0025579310000495</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>49Q10 (secondary) ; 52A10 ; 52A40 (primary) ; 52B60 ; Mathematics ; Metric Geometry</subject><ispartof>Mathematika, 2010-07, Vol.56 (2), p.245-265</ispartof><rights>Copyright © University College London 2010</rights><rights>2010 University College London</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4645-9fe7bdcd258247b4b5ddb9ef71e261ba531596c39f40e3e13bed741ff61b75a23</citedby><cites>FETCH-LOGICAL-c4645-9fe7bdcd258247b4b5ddb9ef71e261ba531596c39f40e3e13bed741ff61b75a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0025579310000495$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2FS0025579310000495$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00443862$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Harrell II, Evans M.</creatorcontrib><creatorcontrib>Henrot, Antoine</creatorcontrib><title>ON THE MAXIMIZATION OF A CLASS OF FUNCTIONALS ON CONVEX REGIONS, AND THE CHARACTERIZATION OF THE FARTHEST CONVEX SET</title><title>Mathematika</title><addtitle>Mathematika</addtitle><description>This article considers a family of functionals J to be maximized over the planar convex sets K for which the perimeter and Steiner point have been fixed. Assuming that J is the integral of a positive quadratic expression in the support function h and its derivative, the maximizer is always either a triangle or a line segment (which can be considered as a collapsed triangle). Among the concrete consequences of the main theorem is the fact that, given any convex body K1 of finite perimeter, the set in this class that is farthest away in the sense of the L2 distance is always a line segment. The same property is proved for the Hausdorff distance.</description><subject>49Q10 (secondary)</subject><subject>52A10</subject><subject>52A40 (primary)</subject><subject>52B60</subject><subject>Mathematics</subject><subject>Metric Geometry</subject><issn>0025-5793</issn><issn>2041-7942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUFtPwjAUbowmIvoDfNuridNeV_bYzMHAsUVWCPGl2VinQxSz4YV_bydITDTal9Pz3XLyAXCK4AVCCF8mEGLGuEsQNI-6bA-0MKTI5i7F-6DV0HbDH4Kjup5DyJwORS2wiiNLBr41FNP-sH8rZN8AcdcSlheKJGm-3XHkNbAIzRpZXhxN_Kk18nsGS84tEV19JniBGAlP-qNvKQ3eFSMzEvllTHx5DA6KdFHrk-1sg3HXl15gh3Gv74nQnlGHMtstNM_yWY5ZB1Oe0YzleebqgiONHZSljCDmOjPiFhRqohHJdM4pKgpDcpZi0gZnm9z7dKGeq_IxrdZqmZYqEKFqMNMUJR0HvyKjRRvtrFrWdaWLnQFB1VSsflRsPN7G81Yu9Pp_gxrK699S7E1KWa_0-y4lrR6UwwlnyundKDmYDAd8QpQ0erK9NH3MqjK_02q-fKmeTJN_3PoB4XWUEQ</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Harrell II, Evans M.</creator><creator>Henrot, Antoine</creator><general>London Mathematical Society</general><general>University College London</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201007</creationdate><title>ON THE MAXIMIZATION OF A CLASS OF FUNCTIONALS ON CONVEX REGIONS, AND THE CHARACTERIZATION OF THE FARTHEST CONVEX SET</title><author>Harrell II, Evans M. ; Henrot, Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4645-9fe7bdcd258247b4b5ddb9ef71e261ba531596c39f40e3e13bed741ff61b75a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>49Q10 (secondary)</topic><topic>52A10</topic><topic>52A40 (primary)</topic><topic>52B60</topic><topic>Mathematics</topic><topic>Metric Geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrell II, Evans M.</creatorcontrib><creatorcontrib>Henrot, Antoine</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrell II, Evans M.</au><au>Henrot, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE MAXIMIZATION OF A CLASS OF FUNCTIONALS ON CONVEX REGIONS, AND THE CHARACTERIZATION OF THE FARTHEST CONVEX SET</atitle><jtitle>Mathematika</jtitle><addtitle>Mathematika</addtitle><date>2010-07</date><risdate>2010</risdate><volume>56</volume><issue>2</issue><spage>245</spage><epage>265</epage><pages>245-265</pages><issn>0025-5793</issn><eissn>2041-7942</eissn><abstract>This article considers a family of functionals J to be maximized over the planar convex sets K for which the perimeter and Steiner point have been fixed. Assuming that J is the integral of a positive quadratic expression in the support function h and its derivative, the maximizer is always either a triangle or a line segment (which can be considered as a collapsed triangle). Among the concrete consequences of the main theorem is the fact that, given any convex body K1 of finite perimeter, the set in this class that is farthest away in the sense of the L2 distance is always a line segment. The same property is proved for the Hausdorff distance.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0025579310000495</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5793
ispartof Mathematika, 2010-07, Vol.56 (2), p.245-265
issn 0025-5793
2041-7942
language eng
recordid cdi_hal_primary_oai_HAL_hal_00443862v1
source Wiley Online Library Journals Frontfile Complete
subjects 49Q10 (secondary)
52A10
52A40 (primary)
52B60
Mathematics
Metric Geometry
title ON THE MAXIMIZATION OF A CLASS OF FUNCTIONALS ON CONVEX REGIONS, AND THE CHARACTERIZATION OF THE FARTHEST CONVEX SET
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20MAXIMIZATION%20OF%20A%20CLASS%20OF%20FUNCTIONALS%20ON%20CONVEX%20REGIONS,%20AND%20THE%20CHARACTERIZATION%20OF%20THE%20FARTHEST%20CONVEX%20SET&rft.jtitle=Mathematika&rft.au=Harrell%20II,%20Evans%20M.&rft.date=2010-07&rft.volume=56&rft.issue=2&rft.spage=245&rft.epage=265&rft.pages=245-265&rft.issn=0025-5793&rft.eissn=2041-7942&rft_id=info:doi/10.1112/S0025579310000495&rft_dat=%3Ccambridge_hal_p%3E10_1112_S0025579310000495%3C/cambridge_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0025579310000495&rfr_iscdi=true