Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation

Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2009-03, Vol.54 (6), p.1435-1456
Hauptverfasser: Bao, L J, Zhu, Y M, Liu, W Y, Croisille, P, Pu, Z B, Robini, M, Magnin, I E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1456
container_issue 6
container_start_page 1435
container_title Physics in medicine & biology
container_volume 54
creator Bao, L J
Zhu, Y M
Liu, W Y
Croisille, P
Pu, Z B
Robini, M
Magnin, I E
description Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.
doi_str_mv 10.1088/0031-9155/54/6/004
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00443130v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66981828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-bce0d8db079fa0860ece7b8af895416a3167d5f558e766da4e25176d209e6b0d3</originalsourceid><addsrcrecordid>eNqNkTFv2zAQhYkiRe24_QMZAk4BPKgmJZGixsBp6wIGurQzQZEnm4FFKqSUwP--VO04Q5ZOh7v73iPxDqEbSr5SIsSKkIJmNWVsxcoVT235Ac1pwWnGGSdXaH4BZug6xkdCKBV5-QnNaJ1TURXVHB0fwHkbrdvh_dgph7UKxiqNjW3bMVrv8AAu-oA7tXMwWI0DRO-U04BtmkHE4z957FWIkLZ9AsANapjE2neNdWDwix32OMKue119Rh9bdYjw5VwX6M_3b7_Xm2z768fP9f020yWphqzRQIwwDanqVhHBCWioGqFaUbOSclVQXhnWMiag4tyoEnJGK25yUgNviCkWaHny3auD7EP6czhKr6zc3G_lNEu5lQUtyDNN7N2J7YN_GiEOsrNRw-GgHPgxSs5rkSIUCcxPoA4-xgDtxZkSOR1HTtnLKXvJSsmnR5Lo9uw-Nh2YN8n5GgnIToD1_f8ZLt_z7znZm7b4CxeopsI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66981828</pqid></control><display><type>article</type><title>Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation</title><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Bao, L J ; Zhu, Y M ; Liu, W Y ; Croisille, P ; Pu, Z B ; Robini, M ; Magnin, I E</creator><creatorcontrib>Bao, L J ; Zhu, Y M ; Liu, W Y ; Croisille, P ; Pu, Z B ; Robini, M ; Magnin, I E</creatorcontrib><description>Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/54/6/004</identifier><identifier>PMID: 19218737</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Computer Science ; Diffusion ; Engineering Sciences ; Heart ; Humans ; Image Processing ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Medical Imaging ; Modeling and Simulation ; Models, Biological ; Myocardium - cytology ; Sensitivity and Specificity ; Signal and Image Processing</subject><ispartof>Physics in medicine &amp; biology, 2009-03, Vol.54 (6), p.1435-1456</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-bce0d8db079fa0860ece7b8af895416a3167d5f558e766da4e25176d209e6b0d3</citedby><cites>FETCH-LOGICAL-c407t-bce0d8db079fa0860ece7b8af895416a3167d5f558e766da4e25176d209e6b0d3</cites><orcidid>0000-0002-7317-9641 ; 0000-0002-5217-493X ; 0000-0001-6814-1449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0031-9155/54/6/004/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19218737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00443130$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bao, L J</creatorcontrib><creatorcontrib>Zhu, Y M</creatorcontrib><creatorcontrib>Liu, W Y</creatorcontrib><creatorcontrib>Croisille, P</creatorcontrib><creatorcontrib>Pu, Z B</creatorcontrib><creatorcontrib>Robini, M</creatorcontrib><creatorcontrib>Magnin, I E</creatorcontrib><title>Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation</title><title>Physics in medicine &amp; biology</title><addtitle>Phys Med Biol</addtitle><description>Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.</description><subject>Computer Science</subject><subject>Diffusion</subject><subject>Engineering Sciences</subject><subject>Heart</subject><subject>Humans</subject><subject>Image Processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical Imaging</subject><subject>Modeling and Simulation</subject><subject>Models, Biological</subject><subject>Myocardium - cytology</subject><subject>Sensitivity and Specificity</subject><subject>Signal and Image Processing</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkTFv2zAQhYkiRe24_QMZAk4BPKgmJZGixsBp6wIGurQzQZEnm4FFKqSUwP--VO04Q5ZOh7v73iPxDqEbSr5SIsSKkIJmNWVsxcoVT235Ac1pwWnGGSdXaH4BZug6xkdCKBV5-QnNaJ1TURXVHB0fwHkbrdvh_dgph7UKxiqNjW3bMVrv8AAu-oA7tXMwWI0DRO-U04BtmkHE4z957FWIkLZ9AsANapjE2neNdWDwix32OMKue119Rh9bdYjw5VwX6M_3b7_Xm2z768fP9f020yWphqzRQIwwDanqVhHBCWioGqFaUbOSclVQXhnWMiag4tyoEnJGK25yUgNviCkWaHny3auD7EP6czhKr6zc3G_lNEu5lQUtyDNN7N2J7YN_GiEOsrNRw-GgHPgxSs5rkSIUCcxPoA4-xgDtxZkSOR1HTtnLKXvJSsmnR5Lo9uw-Nh2YN8n5GgnIToD1_f8ZLt_z7znZm7b4CxeopsI</recordid><startdate>20090321</startdate><enddate>20090321</enddate><creator>Bao, L J</creator><creator>Zhu, Y M</creator><creator>Liu, W Y</creator><creator>Croisille, P</creator><creator>Pu, Z B</creator><creator>Robini, M</creator><creator>Magnin, I E</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7317-9641</orcidid><orcidid>https://orcid.org/0000-0002-5217-493X</orcidid><orcidid>https://orcid.org/0000-0001-6814-1449</orcidid></search><sort><creationdate>20090321</creationdate><title>Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation</title><author>Bao, L J ; Zhu, Y M ; Liu, W Y ; Croisille, P ; Pu, Z B ; Robini, M ; Magnin, I E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-bce0d8db079fa0860ece7b8af895416a3167d5f558e766da4e25176d209e6b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer Science</topic><topic>Diffusion</topic><topic>Engineering Sciences</topic><topic>Heart</topic><topic>Humans</topic><topic>Image Processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical Imaging</topic><topic>Modeling and Simulation</topic><topic>Models, Biological</topic><topic>Myocardium - cytology</topic><topic>Sensitivity and Specificity</topic><topic>Signal and Image Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, L J</creatorcontrib><creatorcontrib>Zhu, Y M</creatorcontrib><creatorcontrib>Liu, W Y</creatorcontrib><creatorcontrib>Croisille, P</creatorcontrib><creatorcontrib>Pu, Z B</creatorcontrib><creatorcontrib>Robini, M</creatorcontrib><creatorcontrib>Magnin, I E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, L J</au><au>Zhu, Y M</au><au>Liu, W Y</au><au>Croisille, P</au><au>Pu, Z B</au><au>Robini, M</au><au>Magnin, I E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation</atitle><jtitle>Physics in medicine &amp; biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2009-03-21</date><risdate>2009</risdate><volume>54</volume><issue>6</issue><spage>1435</spage><epage>1456</epage><pages>1435-1456</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><abstract>Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>19218737</pmid><doi>10.1088/0031-9155/54/6/004</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7317-9641</orcidid><orcidid>https://orcid.org/0000-0002-5217-493X</orcidid><orcidid>https://orcid.org/0000-0001-6814-1449</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2009-03, Vol.54 (6), p.1435-1456
issn 0031-9155
1361-6560
language eng
recordid cdi_hal_primary_oai_HAL_hal_00443130v1
source Institute of Physics Journals; MEDLINE
subjects Computer Science
Diffusion
Engineering Sciences
Heart
Humans
Image Processing
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Medical Imaging
Modeling and Simulation
Models, Biological
Myocardium - cytology
Sensitivity and Specificity
Signal and Image Processing
title Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Denoising%20human%20cardiac%20diffusion%20tensor%20magnetic%20resonance%20images%20using%20sparse%20representation%20combined%20with%20segmentation&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Bao,%20L%20J&rft.date=2009-03-21&rft.volume=54&rft.issue=6&rft.spage=1435&rft.epage=1456&rft.pages=1435-1456&rft.issn=0031-9155&rft.eissn=1361-6560&rft_id=info:doi/10.1088/0031-9155/54/6/004&rft_dat=%3Cproquest_hal_p%3E66981828%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66981828&rft_id=info:pmid/19218737&rfr_iscdi=true