Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation
Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictio...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2009-03, Vol.54 (6), p.1435-1456 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1456 |
---|---|
container_issue | 6 |
container_start_page | 1435 |
container_title | Physics in medicine & biology |
container_volume | 54 |
creator | Bao, L J Zhu, Y M Liu, W Y Croisille, P Pu, Z B Robini, M Magnin, I E |
description | Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures. |
doi_str_mv | 10.1088/0031-9155/54/6/004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00443130v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66981828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-bce0d8db079fa0860ece7b8af895416a3167d5f558e766da4e25176d209e6b0d3</originalsourceid><addsrcrecordid>eNqNkTFv2zAQhYkiRe24_QMZAk4BPKgmJZGixsBp6wIGurQzQZEnm4FFKqSUwP--VO04Q5ZOh7v73iPxDqEbSr5SIsSKkIJmNWVsxcoVT235Ac1pwWnGGSdXaH4BZug6xkdCKBV5-QnNaJ1TURXVHB0fwHkbrdvh_dgph7UKxiqNjW3bMVrv8AAu-oA7tXMwWI0DRO-U04BtmkHE4z957FWIkLZ9AsANapjE2neNdWDwix32OMKue119Rh9bdYjw5VwX6M_3b7_Xm2z768fP9f020yWphqzRQIwwDanqVhHBCWioGqFaUbOSclVQXhnWMiag4tyoEnJGK25yUgNviCkWaHny3auD7EP6czhKr6zc3G_lNEu5lQUtyDNN7N2J7YN_GiEOsrNRw-GgHPgxSs5rkSIUCcxPoA4-xgDtxZkSOR1HTtnLKXvJSsmnR5Lo9uw-Nh2YN8n5GgnIToD1_f8ZLt_z7znZm7b4CxeopsI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66981828</pqid></control><display><type>article</type><title>Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation</title><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Bao, L J ; Zhu, Y M ; Liu, W Y ; Croisille, P ; Pu, Z B ; Robini, M ; Magnin, I E</creator><creatorcontrib>Bao, L J ; Zhu, Y M ; Liu, W Y ; Croisille, P ; Pu, Z B ; Robini, M ; Magnin, I E</creatorcontrib><description>Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/54/6/004</identifier><identifier>PMID: 19218737</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Computer Science ; Diffusion ; Engineering Sciences ; Heart ; Humans ; Image Processing ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Medical Imaging ; Modeling and Simulation ; Models, Biological ; Myocardium - cytology ; Sensitivity and Specificity ; Signal and Image Processing</subject><ispartof>Physics in medicine & biology, 2009-03, Vol.54 (6), p.1435-1456</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-bce0d8db079fa0860ece7b8af895416a3167d5f558e766da4e25176d209e6b0d3</citedby><cites>FETCH-LOGICAL-c407t-bce0d8db079fa0860ece7b8af895416a3167d5f558e766da4e25176d209e6b0d3</cites><orcidid>0000-0002-7317-9641 ; 0000-0002-5217-493X ; 0000-0001-6814-1449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0031-9155/54/6/004/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19218737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00443130$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bao, L J</creatorcontrib><creatorcontrib>Zhu, Y M</creatorcontrib><creatorcontrib>Liu, W Y</creatorcontrib><creatorcontrib>Croisille, P</creatorcontrib><creatorcontrib>Pu, Z B</creatorcontrib><creatorcontrib>Robini, M</creatorcontrib><creatorcontrib>Magnin, I E</creatorcontrib><title>Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation</title><title>Physics in medicine & biology</title><addtitle>Phys Med Biol</addtitle><description>Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.</description><subject>Computer Science</subject><subject>Diffusion</subject><subject>Engineering Sciences</subject><subject>Heart</subject><subject>Humans</subject><subject>Image Processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical Imaging</subject><subject>Modeling and Simulation</subject><subject>Models, Biological</subject><subject>Myocardium - cytology</subject><subject>Sensitivity and Specificity</subject><subject>Signal and Image Processing</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkTFv2zAQhYkiRe24_QMZAk4BPKgmJZGixsBp6wIGurQzQZEnm4FFKqSUwP--VO04Q5ZOh7v73iPxDqEbSr5SIsSKkIJmNWVsxcoVT235Ac1pwWnGGSdXaH4BZug6xkdCKBV5-QnNaJ1TURXVHB0fwHkbrdvh_dgph7UKxiqNjW3bMVrv8AAu-oA7tXMwWI0DRO-U04BtmkHE4z957FWIkLZ9AsANapjE2neNdWDwix32OMKue119Rh9bdYjw5VwX6M_3b7_Xm2z768fP9f020yWphqzRQIwwDanqVhHBCWioGqFaUbOSclVQXhnWMiag4tyoEnJGK25yUgNviCkWaHny3auD7EP6czhKr6zc3G_lNEu5lQUtyDNN7N2J7YN_GiEOsrNRw-GgHPgxSs5rkSIUCcxPoA4-xgDtxZkSOR1HTtnLKXvJSsmnR5Lo9uw-Nh2YN8n5GgnIToD1_f8ZLt_z7znZm7b4CxeopsI</recordid><startdate>20090321</startdate><enddate>20090321</enddate><creator>Bao, L J</creator><creator>Zhu, Y M</creator><creator>Liu, W Y</creator><creator>Croisille, P</creator><creator>Pu, Z B</creator><creator>Robini, M</creator><creator>Magnin, I E</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7317-9641</orcidid><orcidid>https://orcid.org/0000-0002-5217-493X</orcidid><orcidid>https://orcid.org/0000-0001-6814-1449</orcidid></search><sort><creationdate>20090321</creationdate><title>Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation</title><author>Bao, L J ; Zhu, Y M ; Liu, W Y ; Croisille, P ; Pu, Z B ; Robini, M ; Magnin, I E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-bce0d8db079fa0860ece7b8af895416a3167d5f558e766da4e25176d209e6b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computer Science</topic><topic>Diffusion</topic><topic>Engineering Sciences</topic><topic>Heart</topic><topic>Humans</topic><topic>Image Processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical Imaging</topic><topic>Modeling and Simulation</topic><topic>Models, Biological</topic><topic>Myocardium - cytology</topic><topic>Sensitivity and Specificity</topic><topic>Signal and Image Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, L J</creatorcontrib><creatorcontrib>Zhu, Y M</creatorcontrib><creatorcontrib>Liu, W Y</creatorcontrib><creatorcontrib>Croisille, P</creatorcontrib><creatorcontrib>Pu, Z B</creatorcontrib><creatorcontrib>Robini, M</creatorcontrib><creatorcontrib>Magnin, I E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, L J</au><au>Zhu, Y M</au><au>Liu, W Y</au><au>Croisille, P</au><au>Pu, Z B</au><au>Robini, M</au><au>Magnin, I E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation</atitle><jtitle>Physics in medicine & biology</jtitle><addtitle>Phys Med Biol</addtitle><date>2009-03-21</date><risdate>2009</risdate><volume>54</volume><issue>6</issue><spage>1435</spage><epage>1456</epage><pages>1435-1456</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><abstract>Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>19218737</pmid><doi>10.1088/0031-9155/54/6/004</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7317-9641</orcidid><orcidid>https://orcid.org/0000-0002-5217-493X</orcidid><orcidid>https://orcid.org/0000-0001-6814-1449</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2009-03, Vol.54 (6), p.1435-1456 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00443130v1 |
source | Institute of Physics Journals; MEDLINE |
subjects | Computer Science Diffusion Engineering Sciences Heart Humans Image Processing Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Medical Imaging Modeling and Simulation Models, Biological Myocardium - cytology Sensitivity and Specificity Signal and Image Processing |
title | Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A12%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Denoising%20human%20cardiac%20diffusion%20tensor%20magnetic%20resonance%20images%20using%20sparse%20representation%20combined%20with%20segmentation&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Bao,%20L%20J&rft.date=2009-03-21&rft.volume=54&rft.issue=6&rft.spage=1435&rft.epage=1456&rft.pages=1435-1456&rft.issn=0031-9155&rft.eissn=1361-6560&rft_id=info:doi/10.1088/0031-9155/54/6/004&rft_dat=%3Cproquest_hal_p%3E66981828%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=66981828&rft_id=info:pmid/19218737&rfr_iscdi=true |