Computation of surface radiation and natural convection in a heated horticultural greenhouse
This study analyses the effects of the radiation exchange inside a horticultural greenhouse, under winter climatic conditions, according to the number of squared heating tubes used. These ones, hot and isothermal, are equidistant inside the greenhouse volume. The governing differential equations are...
Gespeichert in:
Veröffentlicht in: | Applied energy 2010-03, Vol.87 (3), p.894-900 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 900 |
---|---|
container_issue | 3 |
container_start_page | 894 |
container_title | Applied energy |
container_volume | 87 |
creator | Mezrhab, Ahmed Elfarh, Larbi Naji, Hassan Lemonnier, D. |
description | This study analyses the effects of the radiation exchange inside a horticultural greenhouse, under winter climatic conditions, according to the number of squared heating tubes used. These ones, hot and isothermal, are equidistant inside the greenhouse volume. The governing differential equations are discretized using a finite volume method and the coupling pressure–velocity problem is carried out by the SIMPLER algorithm. The algebraic systems obtained are solved by a conjugate gradient method. Results are reported in terms of isotherms, streamlines and average Nusselt number for Rayleigh number of 10
3–10
6. The contour lines show that the radiative effects are noted near the solid surfaces, and become increasingly important when the Rayleigh number increases. As a result, the rise in the value of Rayleigh number leads to an increase of the overall heat transfer within the greenhouse. |
doi_str_mv | 10.1016/j.apenergy.2009.05.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00434410v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261909002141</els_id><sourcerecordid>35106899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-d980dd140cf5d19681c4d1ab3228e85abe5b6ea3cfdd0700f20ef040f2649e083</originalsourceid><addsrcrecordid>eNqFkUGP0zAQhSMEEmXhL6BcQOKQ7NhxXPvGqgKWVSUucEOypvZk4ypNgp1U6r_HIUuvexiPNPPN07Nelr1nUDJg8vZY4kg9hcdLyQF0CXUJbPsi2zC15YVmTL3MNlCBLLhk-nX2JsYjAHDGYZP93g2ncZ5w8kOfD00e59CgpTyg8-sQe5f3OM0Bu9wO_Znsv7FPm7wlnMjl7RAmb-duhR4DUd8Oc6S32asGu0jvnvpN9uvrl5-7-2L_49v33d2-sDXUU-G0AueYANvUjmmpmBWO4aHiXJGq8UD1QRJWtnEOtgANB2pApC6FJlDVTfZp1W2xM2PwJwwXM6A393d7s8wARCUEgzNL7MeVHcPwZ6Y4mZOPlroOe0qeTVUzkErrZ0HOGGgQdQLlCtowxBiouVpgYJaEzNH8T8gsCRmoTUooHT6sh4FGstcrIsJx4c3ZVKi26bmk4pDkqvSpCqtU47LTwmgA006nJPbhyS5Gi10TsLc-XkU551LVUiTu88pRCuTsKZhoPfWWnA8pWuMG_5zvvwVxxBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21109045</pqid></control><display><type>article</type><title>Computation of surface radiation and natural convection in a heated horticultural greenhouse</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Mezrhab, Ahmed ; Elfarh, Larbi ; Naji, Hassan ; Lemonnier, D.</creator><creatorcontrib>Mezrhab, Ahmed ; Elfarh, Larbi ; Naji, Hassan ; Lemonnier, D.</creatorcontrib><description>This study analyses the effects of the radiation exchange inside a horticultural greenhouse, under winter climatic conditions, according to the number of squared heating tubes used. These ones, hot and isothermal, are equidistant inside the greenhouse volume. The governing differential equations are discretized using a finite volume method and the coupling pressure–velocity problem is carried out by the SIMPLER algorithm. The algebraic systems obtained are solved by a conjugate gradient method. Results are reported in terms of isotherms, streamlines and average Nusselt number for Rayleigh number of 10
3–10
6. The contour lines show that the radiative effects are noted near the solid surfaces, and become increasingly important when the Rayleigh number increases. As a result, the rise in the value of Rayleigh number leads to an increase of the overall heat transfer within the greenhouse.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2009.05.017</identifier><identifier>CODEN: APENDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Finite volume method ; Heat transfer ; Horticultural greenhouse ; Horticultural greenhouse Surface radiation Natural convection Finite volume method View factors ; Miscellaneous ; Natural convection ; Natural energy ; Physics ; Solar energy ; Surface radiation ; Theoretical studies. Data and constants. Metering ; View factors</subject><ispartof>Applied energy, 2010-03, Vol.87 (3), p.894-900</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-d980dd140cf5d19681c4d1ab3228e85abe5b6ea3cfdd0700f20ef040f2649e083</citedby><cites>FETCH-LOGICAL-c505t-d980dd140cf5d19681c4d1ab3228e85abe5b6ea3cfdd0700f20ef040f2649e083</cites><orcidid>0000-0003-0508-3979 ; 0000-0002-5994-7958 ; 0000-0001-6013-7496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apenergy.2009.05.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,4009,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22268564$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeappene/v_3a87_3ay_3a2010_3ai_3a3_3ap_3a894-900.htm$$DView record in RePEc$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00434410$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mezrhab, Ahmed</creatorcontrib><creatorcontrib>Elfarh, Larbi</creatorcontrib><creatorcontrib>Naji, Hassan</creatorcontrib><creatorcontrib>Lemonnier, D.</creatorcontrib><title>Computation of surface radiation and natural convection in a heated horticultural greenhouse</title><title>Applied energy</title><description>This study analyses the effects of the radiation exchange inside a horticultural greenhouse, under winter climatic conditions, according to the number of squared heating tubes used. These ones, hot and isothermal, are equidistant inside the greenhouse volume. The governing differential equations are discretized using a finite volume method and the coupling pressure–velocity problem is carried out by the SIMPLER algorithm. The algebraic systems obtained are solved by a conjugate gradient method. Results are reported in terms of isotherms, streamlines and average Nusselt number for Rayleigh number of 10
3–10
6. The contour lines show that the radiative effects are noted near the solid surfaces, and become increasingly important when the Rayleigh number increases. As a result, the rise in the value of Rayleigh number leads to an increase of the overall heat transfer within the greenhouse.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Finite volume method</subject><subject>Heat transfer</subject><subject>Horticultural greenhouse</subject><subject>Horticultural greenhouse Surface radiation Natural convection Finite volume method View factors</subject><subject>Miscellaneous</subject><subject>Natural convection</subject><subject>Natural energy</subject><subject>Physics</subject><subject>Solar energy</subject><subject>Surface radiation</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>View factors</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkUGP0zAQhSMEEmXhL6BcQOKQ7NhxXPvGqgKWVSUucEOypvZk4ypNgp1U6r_HIUuvexiPNPPN07Nelr1nUDJg8vZY4kg9hcdLyQF0CXUJbPsi2zC15YVmTL3MNlCBLLhk-nX2JsYjAHDGYZP93g2ncZ5w8kOfD00e59CgpTyg8-sQe5f3OM0Bu9wO_Znsv7FPm7wlnMjl7RAmb-duhR4DUd8Oc6S32asGu0jvnvpN9uvrl5-7-2L_49v33d2-sDXUU-G0AueYANvUjmmpmBWO4aHiXJGq8UD1QRJWtnEOtgANB2pApC6FJlDVTfZp1W2xM2PwJwwXM6A393d7s8wARCUEgzNL7MeVHcPwZ6Y4mZOPlroOe0qeTVUzkErrZ0HOGGgQdQLlCtowxBiouVpgYJaEzNH8T8gsCRmoTUooHT6sh4FGstcrIsJx4c3ZVKi26bmk4pDkqvSpCqtU47LTwmgA006nJPbhyS5Gi10TsLc-XkU551LVUiTu88pRCuTsKZhoPfWWnA8pWuMG_5zvvwVxxBM</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Mezrhab, Ahmed</creator><creator>Elfarh, Larbi</creator><creator>Naji, Hassan</creator><creator>Lemonnier, D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0508-3979</orcidid><orcidid>https://orcid.org/0000-0002-5994-7958</orcidid><orcidid>https://orcid.org/0000-0001-6013-7496</orcidid></search><sort><creationdate>20100301</creationdate><title>Computation of surface radiation and natural convection in a heated horticultural greenhouse</title><author>Mezrhab, Ahmed ; Elfarh, Larbi ; Naji, Hassan ; Lemonnier, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-d980dd140cf5d19681c4d1ab3228e85abe5b6ea3cfdd0700f20ef040f2649e083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Finite volume method</topic><topic>Heat transfer</topic><topic>Horticultural greenhouse</topic><topic>Horticultural greenhouse Surface radiation Natural convection Finite volume method View factors</topic><topic>Miscellaneous</topic><topic>Natural convection</topic><topic>Natural energy</topic><topic>Physics</topic><topic>Solar energy</topic><topic>Surface radiation</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>View factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mezrhab, Ahmed</creatorcontrib><creatorcontrib>Elfarh, Larbi</creatorcontrib><creatorcontrib>Naji, Hassan</creatorcontrib><creatorcontrib>Lemonnier, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mezrhab, Ahmed</au><au>Elfarh, Larbi</au><au>Naji, Hassan</au><au>Lemonnier, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of surface radiation and natural convection in a heated horticultural greenhouse</atitle><jtitle>Applied energy</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>87</volume><issue>3</issue><spage>894</spage><epage>900</epage><pages>894-900</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><coden>APENDX</coden><abstract>This study analyses the effects of the radiation exchange inside a horticultural greenhouse, under winter climatic conditions, according to the number of squared heating tubes used. These ones, hot and isothermal, are equidistant inside the greenhouse volume. The governing differential equations are discretized using a finite volume method and the coupling pressure–velocity problem is carried out by the SIMPLER algorithm. The algebraic systems obtained are solved by a conjugate gradient method. Results are reported in terms of isotherms, streamlines and average Nusselt number for Rayleigh number of 10
3–10
6. The contour lines show that the radiative effects are noted near the solid surfaces, and become increasingly important when the Rayleigh number increases. As a result, the rise in the value of Rayleigh number leads to an increase of the overall heat transfer within the greenhouse.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2009.05.017</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0508-3979</orcidid><orcidid>https://orcid.org/0000-0002-5994-7958</orcidid><orcidid>https://orcid.org/0000-0001-6013-7496</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-2619 |
ispartof | Applied energy, 2010-03, Vol.87 (3), p.894-900 |
issn | 0306-2619 1872-9118 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00434410v1 |
source | RePEc; Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Energy Energy. Thermal use of fuels Exact sciences and technology Finite volume method Heat transfer Horticultural greenhouse Horticultural greenhouse Surface radiation Natural convection Finite volume method View factors Miscellaneous Natural convection Natural energy Physics Solar energy Surface radiation Theoretical studies. Data and constants. Metering View factors |
title | Computation of surface radiation and natural convection in a heated horticultural greenhouse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A41%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20surface%20radiation%20and%20natural%20convection%20in%20a%20heated%20horticultural%20greenhouse&rft.jtitle=Applied%20energy&rft.au=Mezrhab,%20Ahmed&rft.date=2010-03-01&rft.volume=87&rft.issue=3&rft.spage=894&rft.epage=900&rft.pages=894-900&rft.issn=0306-2619&rft.eissn=1872-9118&rft.coden=APENDX&rft_id=info:doi/10.1016/j.apenergy.2009.05.017&rft_dat=%3Cproquest_hal_p%3E35106899%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21109045&rft_id=info:pmid/&rft_els_id=S0306261909002141&rfr_iscdi=true |