Computation of surface radiation and natural convection in a heated horticultural greenhouse

This study analyses the effects of the radiation exchange inside a horticultural greenhouse, under winter climatic conditions, according to the number of squared heating tubes used. These ones, hot and isothermal, are equidistant inside the greenhouse volume. The governing differential equations are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2010-03, Vol.87 (3), p.894-900
Hauptverfasser: Mezrhab, Ahmed, Elfarh, Larbi, Naji, Hassan, Lemonnier, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 900
container_issue 3
container_start_page 894
container_title Applied energy
container_volume 87
creator Mezrhab, Ahmed
Elfarh, Larbi
Naji, Hassan
Lemonnier, D.
description This study analyses the effects of the radiation exchange inside a horticultural greenhouse, under winter climatic conditions, according to the number of squared heating tubes used. These ones, hot and isothermal, are equidistant inside the greenhouse volume. The governing differential equations are discretized using a finite volume method and the coupling pressure–velocity problem is carried out by the SIMPLER algorithm. The algebraic systems obtained are solved by a conjugate gradient method. Results are reported in terms of isotherms, streamlines and average Nusselt number for Rayleigh number of 10 3–10 6. The contour lines show that the radiative effects are noted near the solid surfaces, and become increasingly important when the Rayleigh number increases. As a result, the rise in the value of Rayleigh number leads to an increase of the overall heat transfer within the greenhouse.
doi_str_mv 10.1016/j.apenergy.2009.05.017
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00434410v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261909002141</els_id><sourcerecordid>35106899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-d980dd140cf5d19681c4d1ab3228e85abe5b6ea3cfdd0700f20ef040f2649e083</originalsourceid><addsrcrecordid>eNqFkUGP0zAQhSMEEmXhL6BcQOKQ7NhxXPvGqgKWVSUucEOypvZk4ypNgp1U6r_HIUuvexiPNPPN07Nelr1nUDJg8vZY4kg9hcdLyQF0CXUJbPsi2zC15YVmTL3MNlCBLLhk-nX2JsYjAHDGYZP93g2ncZ5w8kOfD00e59CgpTyg8-sQe5f3OM0Bu9wO_Znsv7FPm7wlnMjl7RAmb-duhR4DUd8Oc6S32asGu0jvnvpN9uvrl5-7-2L_49v33d2-sDXUU-G0AueYANvUjmmpmBWO4aHiXJGq8UD1QRJWtnEOtgANB2pApC6FJlDVTfZp1W2xM2PwJwwXM6A393d7s8wARCUEgzNL7MeVHcPwZ6Y4mZOPlroOe0qeTVUzkErrZ0HOGGgQdQLlCtowxBiouVpgYJaEzNH8T8gsCRmoTUooHT6sh4FGstcrIsJx4c3ZVKi26bmk4pDkqvSpCqtU47LTwmgA006nJPbhyS5Gi10TsLc-XkU551LVUiTu88pRCuTsKZhoPfWWnA8pWuMG_5zvvwVxxBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21109045</pqid></control><display><type>article</type><title>Computation of surface radiation and natural convection in a heated horticultural greenhouse</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Mezrhab, Ahmed ; Elfarh, Larbi ; Naji, Hassan ; Lemonnier, D.</creator><creatorcontrib>Mezrhab, Ahmed ; Elfarh, Larbi ; Naji, Hassan ; Lemonnier, D.</creatorcontrib><description>This study analyses the effects of the radiation exchange inside a horticultural greenhouse, under winter climatic conditions, according to the number of squared heating tubes used. These ones, hot and isothermal, are equidistant inside the greenhouse volume. The governing differential equations are discretized using a finite volume method and the coupling pressure–velocity problem is carried out by the SIMPLER algorithm. The algebraic systems obtained are solved by a conjugate gradient method. Results are reported in terms of isotherms, streamlines and average Nusselt number for Rayleigh number of 10 3–10 6. The contour lines show that the radiative effects are noted near the solid surfaces, and become increasingly important when the Rayleigh number increases. As a result, the rise in the value of Rayleigh number leads to an increase of the overall heat transfer within the greenhouse.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2009.05.017</identifier><identifier>CODEN: APENDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Finite volume method ; Heat transfer ; Horticultural greenhouse ; Horticultural greenhouse Surface radiation Natural convection Finite volume method View factors ; Miscellaneous ; Natural convection ; Natural energy ; Physics ; Solar energy ; Surface radiation ; Theoretical studies. Data and constants. Metering ; View factors</subject><ispartof>Applied energy, 2010-03, Vol.87 (3), p.894-900</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-d980dd140cf5d19681c4d1ab3228e85abe5b6ea3cfdd0700f20ef040f2649e083</citedby><cites>FETCH-LOGICAL-c505t-d980dd140cf5d19681c4d1ab3228e85abe5b6ea3cfdd0700f20ef040f2649e083</cites><orcidid>0000-0003-0508-3979 ; 0000-0002-5994-7958 ; 0000-0001-6013-7496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apenergy.2009.05.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,4009,27928,27929,45999</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22268564$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeappene/v_3a87_3ay_3a2010_3ai_3a3_3ap_3a894-900.htm$$DView record in RePEc$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00434410$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mezrhab, Ahmed</creatorcontrib><creatorcontrib>Elfarh, Larbi</creatorcontrib><creatorcontrib>Naji, Hassan</creatorcontrib><creatorcontrib>Lemonnier, D.</creatorcontrib><title>Computation of surface radiation and natural convection in a heated horticultural greenhouse</title><title>Applied energy</title><description>This study analyses the effects of the radiation exchange inside a horticultural greenhouse, under winter climatic conditions, according to the number of squared heating tubes used. These ones, hot and isothermal, are equidistant inside the greenhouse volume. The governing differential equations are discretized using a finite volume method and the coupling pressure–velocity problem is carried out by the SIMPLER algorithm. The algebraic systems obtained are solved by a conjugate gradient method. Results are reported in terms of isotherms, streamlines and average Nusselt number for Rayleigh number of 10 3–10 6. The contour lines show that the radiative effects are noted near the solid surfaces, and become increasingly important when the Rayleigh number increases. As a result, the rise in the value of Rayleigh number leads to an increase of the overall heat transfer within the greenhouse.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Finite volume method</subject><subject>Heat transfer</subject><subject>Horticultural greenhouse</subject><subject>Horticultural greenhouse Surface radiation Natural convection Finite volume method View factors</subject><subject>Miscellaneous</subject><subject>Natural convection</subject><subject>Natural energy</subject><subject>Physics</subject><subject>Solar energy</subject><subject>Surface radiation</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>View factors</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkUGP0zAQhSMEEmXhL6BcQOKQ7NhxXPvGqgKWVSUucEOypvZk4ypNgp1U6r_HIUuvexiPNPPN07Nelr1nUDJg8vZY4kg9hcdLyQF0CXUJbPsi2zC15YVmTL3MNlCBLLhk-nX2JsYjAHDGYZP93g2ncZ5w8kOfD00e59CgpTyg8-sQe5f3OM0Bu9wO_Znsv7FPm7wlnMjl7RAmb-duhR4DUd8Oc6S32asGu0jvnvpN9uvrl5-7-2L_49v33d2-sDXUU-G0AueYANvUjmmpmBWO4aHiXJGq8UD1QRJWtnEOtgANB2pApC6FJlDVTfZp1W2xM2PwJwwXM6A393d7s8wARCUEgzNL7MeVHcPwZ6Y4mZOPlroOe0qeTVUzkErrZ0HOGGgQdQLlCtowxBiouVpgYJaEzNH8T8gsCRmoTUooHT6sh4FGstcrIsJx4c3ZVKi26bmk4pDkqvSpCqtU47LTwmgA006nJPbhyS5Gi10TsLc-XkU551LVUiTu88pRCuTsKZhoPfWWnA8pWuMG_5zvvwVxxBM</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Mezrhab, Ahmed</creator><creator>Elfarh, Larbi</creator><creator>Naji, Hassan</creator><creator>Lemonnier, D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0508-3979</orcidid><orcidid>https://orcid.org/0000-0002-5994-7958</orcidid><orcidid>https://orcid.org/0000-0001-6013-7496</orcidid></search><sort><creationdate>20100301</creationdate><title>Computation of surface radiation and natural convection in a heated horticultural greenhouse</title><author>Mezrhab, Ahmed ; Elfarh, Larbi ; Naji, Hassan ; Lemonnier, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-d980dd140cf5d19681c4d1ab3228e85abe5b6ea3cfdd0700f20ef040f2649e083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Finite volume method</topic><topic>Heat transfer</topic><topic>Horticultural greenhouse</topic><topic>Horticultural greenhouse Surface radiation Natural convection Finite volume method View factors</topic><topic>Miscellaneous</topic><topic>Natural convection</topic><topic>Natural energy</topic><topic>Physics</topic><topic>Solar energy</topic><topic>Surface radiation</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>View factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mezrhab, Ahmed</creatorcontrib><creatorcontrib>Elfarh, Larbi</creatorcontrib><creatorcontrib>Naji, Hassan</creatorcontrib><creatorcontrib>Lemonnier, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mezrhab, Ahmed</au><au>Elfarh, Larbi</au><au>Naji, Hassan</au><au>Lemonnier, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of surface radiation and natural convection in a heated horticultural greenhouse</atitle><jtitle>Applied energy</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>87</volume><issue>3</issue><spage>894</spage><epage>900</epage><pages>894-900</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><coden>APENDX</coden><abstract>This study analyses the effects of the radiation exchange inside a horticultural greenhouse, under winter climatic conditions, according to the number of squared heating tubes used. These ones, hot and isothermal, are equidistant inside the greenhouse volume. The governing differential equations are discretized using a finite volume method and the coupling pressure–velocity problem is carried out by the SIMPLER algorithm. The algebraic systems obtained are solved by a conjugate gradient method. Results are reported in terms of isotherms, streamlines and average Nusselt number for Rayleigh number of 10 3–10 6. The contour lines show that the radiative effects are noted near the solid surfaces, and become increasingly important when the Rayleigh number increases. As a result, the rise in the value of Rayleigh number leads to an increase of the overall heat transfer within the greenhouse.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2009.05.017</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0508-3979</orcidid><orcidid>https://orcid.org/0000-0002-5994-7958</orcidid><orcidid>https://orcid.org/0000-0001-6013-7496</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2010-03, Vol.87 (3), p.894-900
issn 0306-2619
1872-9118
language eng
recordid cdi_hal_primary_oai_HAL_hal_00434410v1
source RePEc; Access via ScienceDirect (Elsevier)
subjects Applied sciences
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Finite volume method
Heat transfer
Horticultural greenhouse
Horticultural greenhouse Surface radiation Natural convection Finite volume method View factors
Miscellaneous
Natural convection
Natural energy
Physics
Solar energy
Surface radiation
Theoretical studies. Data and constants. Metering
View factors
title Computation of surface radiation and natural convection in a heated horticultural greenhouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A41%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20surface%20radiation%20and%20natural%20convection%20in%20a%20heated%20horticultural%20greenhouse&rft.jtitle=Applied%20energy&rft.au=Mezrhab,%20Ahmed&rft.date=2010-03-01&rft.volume=87&rft.issue=3&rft.spage=894&rft.epage=900&rft.pages=894-900&rft.issn=0306-2619&rft.eissn=1872-9118&rft.coden=APENDX&rft_id=info:doi/10.1016/j.apenergy.2009.05.017&rft_dat=%3Cproquest_hal_p%3E35106899%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21109045&rft_id=info:pmid/&rft_els_id=S0306261909002141&rfr_iscdi=true