Slow crack growth resistance and bridging stress determination in alumina-rich magnesium aluminate spinel/tungsten composites

The slow crack growth (SCG) resistance ( V–K I diagrams) of magnesium aluminate spinel and its tungsten composites with different metallic content (7, 10, 14 and 22 vol.%) is reported. It is found that tungsten plays a crucial role in the composite by increasing crack resistance: the higher the W co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2009-04, Vol.57 (7), p.2121-2127
Hauptverfasser: Rodriguez-Suarez, T., Lopez-Esteban, S., Pecharromán, C., Moya, J.S., El Attaoui, H., Benaqqa, C., Chevalier, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2127
container_issue 7
container_start_page 2121
container_title Acta materialia
container_volume 57
creator Rodriguez-Suarez, T.
Lopez-Esteban, S.
Pecharromán, C.
Moya, J.S.
El Attaoui, H.
Benaqqa, C.
Chevalier, J.
description The slow crack growth (SCG) resistance ( V–K I diagrams) of magnesium aluminate spinel and its tungsten composites with different metallic content (7, 10, 14 and 22 vol.%) is reported. It is found that tungsten plays a crucial role in the composite by increasing crack resistance: the higher the W content, the higher the stress intensity factor needed for crack extension at a given rate. The reinforcement is due to the bridging mechanism performed by metal particles, as it strongly affects the compliance of cracked specimens. Its magnitude is estimated by a compliance function Φ( a) from a double torsion test. From the compliance function, R-curve behaviour is predicted for the composite with highest tungsten content. It explains the effect of metal particles on SCG curves. The W–MgAl 2O 4 interface is believed to influence the reinforcement mechanism.
doi_str_mv 10.1016/j.actamat.2009.01.004
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00431370v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645409000329</els_id><sourcerecordid>33904916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-8cf43257aea5fc96b4d4f3f72fc1b5ba8c0b8d082a923725dab69ced9fe5437e3</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhiMEEkvhJyD5AhKHZP2VrxNarYBFqsQBOFsTZ5K6JHbxuLviwH_HpWWvnMYzfmZe6X2L4rXgleCiud5XYBOskCrJeV9xUXGunxRXomtVKXWtnua3qvuy0bV-Xrwg2nMuZKv5VfH76xIemI1gf7A5hoe0YxHJUQJvkYEf2RDdODs_M0r5h9iICePqPCQXPHOewXI8tWV0dsdWmH3eP67_xgkZHZzH5Tod_UwJPbNhPQRyCell8WyChfDVpW6K7x8_fLu9K7dfPn2-vdmWVnOdys5OWsm6BYR6sn0z6FFPamrlZMVQD9BZPnQj7yT0UrWyHmFoeotjP2GtVYtqU7w7393BYg7RrRB_mQDO3N1szWmWDVNCtfxeZPbtmT3E8POIlMzqyOKygMdwJKNUz3UvmgzWZ9DGQBRxerwsuDkFY_bmEow5BWO4-KuzKd5cBIAsLFPMVjt6XJZC9o3uZObenznMztw7jIaswxzL6CLaZMbg_qP0B_VXqfk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33904916</pqid></control><display><type>article</type><title>Slow crack growth resistance and bridging stress determination in alumina-rich magnesium aluminate spinel/tungsten composites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Rodriguez-Suarez, T. ; Lopez-Esteban, S. ; Pecharromán, C. ; Moya, J.S. ; El Attaoui, H. ; Benaqqa, C. ; Chevalier, J.</creator><creatorcontrib>Rodriguez-Suarez, T. ; Lopez-Esteban, S. ; Pecharromán, C. ; Moya, J.S. ; El Attaoui, H. ; Benaqqa, C. ; Chevalier, J.</creatorcontrib><description>The slow crack growth (SCG) resistance ( V–K I diagrams) of magnesium aluminate spinel and its tungsten composites with different metallic content (7, 10, 14 and 22 vol.%) is reported. It is found that tungsten plays a crucial role in the composite by increasing crack resistance: the higher the W content, the higher the stress intensity factor needed for crack extension at a given rate. The reinforcement is due to the bridging mechanism performed by metal particles, as it strongly affects the compliance of cracked specimens. Its magnitude is estimated by a compliance function Φ( a) from a double torsion test. From the compliance function, R-curve behaviour is predicted for the composite with highest tungsten content. It explains the effect of metal particles on SCG curves. The W–MgAl 2O 4 interface is believed to influence the reinforcement mechanism.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2009.01.004</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Bridging ; Ceramic–matrix composites ; Cermets ; Engineering Sciences ; Exact sciences and technology ; Hot pressing ; Interfaces ; Materials ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy</subject><ispartof>Acta materialia, 2009-04, Vol.57 (7), p.2121-2127</ispartof><rights>2009 Acta Materialia Inc.</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-8cf43257aea5fc96b4d4f3f72fc1b5ba8c0b8d082a923725dab69ced9fe5437e3</citedby><cites>FETCH-LOGICAL-c404t-8cf43257aea5fc96b4d4f3f72fc1b5ba8c0b8d082a923725dab69ced9fe5437e3</cites><orcidid>0000-0001-8546-6149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2009.01.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21296482$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00431370$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodriguez-Suarez, T.</creatorcontrib><creatorcontrib>Lopez-Esteban, S.</creatorcontrib><creatorcontrib>Pecharromán, C.</creatorcontrib><creatorcontrib>Moya, J.S.</creatorcontrib><creatorcontrib>El Attaoui, H.</creatorcontrib><creatorcontrib>Benaqqa, C.</creatorcontrib><creatorcontrib>Chevalier, J.</creatorcontrib><title>Slow crack growth resistance and bridging stress determination in alumina-rich magnesium aluminate spinel/tungsten composites</title><title>Acta materialia</title><description>The slow crack growth (SCG) resistance ( V–K I diagrams) of magnesium aluminate spinel and its tungsten composites with different metallic content (7, 10, 14 and 22 vol.%) is reported. It is found that tungsten plays a crucial role in the composite by increasing crack resistance: the higher the W content, the higher the stress intensity factor needed for crack extension at a given rate. The reinforcement is due to the bridging mechanism performed by metal particles, as it strongly affects the compliance of cracked specimens. Its magnitude is estimated by a compliance function Φ( a) from a double torsion test. From the compliance function, R-curve behaviour is predicted for the composite with highest tungsten content. It explains the effect of metal particles on SCG curves. The W–MgAl 2O 4 interface is believed to influence the reinforcement mechanism.</description><subject>Applied sciences</subject><subject>Bridging</subject><subject>Ceramic–matrix composites</subject><subject>Cermets</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Hot pressing</subject><subject>Interfaces</subject><subject>Materials</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU2P0zAQhiMEEkvhJyD5AhKHZP2VrxNarYBFqsQBOFsTZ5K6JHbxuLviwH_HpWWvnMYzfmZe6X2L4rXgleCiud5XYBOskCrJeV9xUXGunxRXomtVKXWtnua3qvuy0bV-Xrwg2nMuZKv5VfH76xIemI1gf7A5hoe0YxHJUQJvkYEf2RDdODs_M0r5h9iICePqPCQXPHOewXI8tWV0dsdWmH3eP67_xgkZHZzH5Tod_UwJPbNhPQRyCell8WyChfDVpW6K7x8_fLu9K7dfPn2-vdmWVnOdys5OWsm6BYR6sn0z6FFPamrlZMVQD9BZPnQj7yT0UrWyHmFoeotjP2GtVYtqU7w7393BYg7RrRB_mQDO3N1szWmWDVNCtfxeZPbtmT3E8POIlMzqyOKygMdwJKNUz3UvmgzWZ9DGQBRxerwsuDkFY_bmEow5BWO4-KuzKd5cBIAsLFPMVjt6XJZC9o3uZObenznMztw7jIaswxzL6CLaZMbg_qP0B_VXqfk</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Rodriguez-Suarez, T.</creator><creator>Lopez-Esteban, S.</creator><creator>Pecharromán, C.</creator><creator>Moya, J.S.</creator><creator>El Attaoui, H.</creator><creator>Benaqqa, C.</creator><creator>Chevalier, J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8546-6149</orcidid></search><sort><creationdate>20090401</creationdate><title>Slow crack growth resistance and bridging stress determination in alumina-rich magnesium aluminate spinel/tungsten composites</title><author>Rodriguez-Suarez, T. ; Lopez-Esteban, S. ; Pecharromán, C. ; Moya, J.S. ; El Attaoui, H. ; Benaqqa, C. ; Chevalier, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-8cf43257aea5fc96b4d4f3f72fc1b5ba8c0b8d082a923725dab69ced9fe5437e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Bridging</topic><topic>Ceramic–matrix composites</topic><topic>Cermets</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Hot pressing</topic><topic>Interfaces</topic><topic>Materials</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez-Suarez, T.</creatorcontrib><creatorcontrib>Lopez-Esteban, S.</creatorcontrib><creatorcontrib>Pecharromán, C.</creatorcontrib><creatorcontrib>Moya, J.S.</creatorcontrib><creatorcontrib>El Attaoui, H.</creatorcontrib><creatorcontrib>Benaqqa, C.</creatorcontrib><creatorcontrib>Chevalier, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez-Suarez, T.</au><au>Lopez-Esteban, S.</au><au>Pecharromán, C.</au><au>Moya, J.S.</au><au>El Attaoui, H.</au><au>Benaqqa, C.</au><au>Chevalier, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow crack growth resistance and bridging stress determination in alumina-rich magnesium aluminate spinel/tungsten composites</atitle><jtitle>Acta materialia</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>57</volume><issue>7</issue><spage>2121</spage><epage>2127</epage><pages>2121-2127</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The slow crack growth (SCG) resistance ( V–K I diagrams) of magnesium aluminate spinel and its tungsten composites with different metallic content (7, 10, 14 and 22 vol.%) is reported. It is found that tungsten plays a crucial role in the composite by increasing crack resistance: the higher the W content, the higher the stress intensity factor needed for crack extension at a given rate. The reinforcement is due to the bridging mechanism performed by metal particles, as it strongly affects the compliance of cracked specimens. Its magnitude is estimated by a compliance function Φ( a) from a double torsion test. From the compliance function, R-curve behaviour is predicted for the composite with highest tungsten content. It explains the effect of metal particles on SCG curves. The W–MgAl 2O 4 interface is believed to influence the reinforcement mechanism.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2009.01.004</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8546-6149</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2009-04, Vol.57 (7), p.2121-2127
issn 1359-6454
1873-2453
language eng
recordid cdi_hal_primary_oai_HAL_hal_00431370v1
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Bridging
Ceramic–matrix composites
Cermets
Engineering Sciences
Exact sciences and technology
Hot pressing
Interfaces
Materials
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
title Slow crack growth resistance and bridging stress determination in alumina-rich magnesium aluminate spinel/tungsten composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow%20crack%20growth%20resistance%20and%20bridging%20stress%20determination%20in%20alumina-rich%20magnesium%20aluminate%20spinel/tungsten%20composites&rft.jtitle=Acta%20materialia&rft.au=Rodriguez-Suarez,%20T.&rft.date=2009-04-01&rft.volume=57&rft.issue=7&rft.spage=2121&rft.epage=2127&rft.pages=2121-2127&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2009.01.004&rft_dat=%3Cproquest_hal_p%3E33904916%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33904916&rft_id=info:pmid/&rft_els_id=S1359645409000329&rfr_iscdi=true