Salicylic Acid Transport in Ricinus communis Involves a pH-Dependent Carrier System in Addition to Diffusion
Despite its important functions in plant physiology and defense, the membrane transport mechanism of salicylic acid (SA) is poorly documented due to the general assumption that SA is taken up by plant cells via the ion trap mechanism. Using Ricinus communis seedlings and modeling tools (ACD LogD and...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2009-08, Vol.150 (4), p.2081-2091 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2091 |
---|---|
container_issue | 4 |
container_start_page | 2081 |
container_title | Plant physiology (Bethesda) |
container_volume | 150 |
creator | Rocher, Françoise Chollet, Jean-François Legros, Sandrine Jousse, Cyril Lemoine, Rémi Faucher, Mireille Bush, Daniel R Bonnemain, Jean-Louis |
description | Despite its important functions in plant physiology and defense, the membrane transport mechanism of salicylic acid (SA) is poorly documented due to the general assumption that SA is taken up by plant cells via the ion trap mechanism. Using Ricinus communis seedlings and modeling tools (ACD LogD and Vega ZZ softwares), we show that phloem accumulation of SA and hydroxylated analogs is completely uncorrelated with the physicochemical parameters suitable for diffusion (number of hydrogen bond donors, polar surface area, and, especially, LogD values at apoplastic pHs and Δ LogD between apoplast and phloem sap pH values). These and other data (such as accumulation in phloem sap of the poorly permeant dissociated form of monohalogen derivatives from apoplast and inhibition of SA transport by the thiol reagent p-chloromercuribenzenesulfonic acid [pCMBS]) lead to the following conclusions. As in intestinal cells, SA transport in Ricinus involves a pH-dependent carrier system sensitive to pCMBS; this carrier can translocate monohalogen analogs in the anionic form; the efficiency of phloem transport of hydroxylated benzoic acid derivatives is tightly dependent on the position of the hydroxyl group on the aromatic ring (SA corresponds to the optimal position) but moderately affected by halogen addition in position 5, which is known to increase plant defense. Furthermore, combining time-course experiments and pCMBS used as a tool, we give information about the localization of the SA carrier. SA uptake by epidermal cells (i.e. the step preceding the symplastic transport to veins) insensitive to pCMBS occurs via the ion-trap mechanism, whereas apoplastic vein loading involves a carrier-mediated mechanism (which is targeted by pCMBS) in addition to diffusion. |
doi_str_mv | 10.1104/pp.109.140095 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00422035v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537919</jstor_id><sourcerecordid>40537919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-4c7210fcaf910127931b2fb60633e15bdea513005026a30fab21def506541bc33</originalsourceid><addsrcrecordid>eNpFkc2P0zAQxSMEYsvCkSPgC0gcUmb8kcTHqgt0pUpIdPccOY4NXiVxsJNK_e_XVapyGM3Y7-cna16WvUdYIwL_No5rBLlGDiDFi2yFgtGcCl69zFYAaYaqkjfZmxifAAAZ8tfZDUoumSxhlXUH1Tl9SkU22rXkIaghjj5MxA3kt9NumCPRvu_nwUVyPxx9dzSRKDLu8jszmqE1w0S2KgRnAjmc4mT689NN27rJ-YFMntw5a-eYDm-zV1Z10by79Nvs8cf3h-0u3__6eb_d7HPNy3LKuS4pgtXKSgSkpWTYUNsUUDBmUDStUQIZgABaKAZWNRRbYwUUgmOjGbvNvi6-f1VXj8H1Kpxqr1y92-zr8x0ApxSYOGJivyzsGPy_2cSp7l3UpuvUYPwc66IUBedVmcB8AXXwMQZjr84I9TmKehzTKOslisR_vBjPTW_a__Rl9wn4fAFU1KqzafPaxStHsUIoi_MPPyzcU5x8uOocBCslyqR_WnSrfK3-hOTxeKApasCi4AJK9gwSiaKi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67564487</pqid></control><display><type>article</type><title>Salicylic Acid Transport in Ricinus communis Involves a pH-Dependent Carrier System in Addition to Diffusion</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB Electronic Journals Library</source><creator>Rocher, Françoise ; Chollet, Jean-François ; Legros, Sandrine ; Jousse, Cyril ; Lemoine, Rémi ; Faucher, Mireille ; Bush, Daniel R ; Bonnemain, Jean-Louis</creator><creatorcontrib>Rocher, Françoise ; Chollet, Jean-François ; Legros, Sandrine ; Jousse, Cyril ; Lemoine, Rémi ; Faucher, Mireille ; Bush, Daniel R ; Bonnemain, Jean-Louis</creatorcontrib><description>Despite its important functions in plant physiology and defense, the membrane transport mechanism of salicylic acid (SA) is poorly documented due to the general assumption that SA is taken up by plant cells via the ion trap mechanism. Using Ricinus communis seedlings and modeling tools (ACD LogD and Vega ZZ softwares), we show that phloem accumulation of SA and hydroxylated analogs is completely uncorrelated with the physicochemical parameters suitable for diffusion (number of hydrogen bond donors, polar surface area, and, especially, LogD values at apoplastic pHs and Δ LogD between apoplast and phloem sap pH values). These and other data (such as accumulation in phloem sap of the poorly permeant dissociated form of monohalogen derivatives from apoplast and inhibition of SA transport by the thiol reagent p-chloromercuribenzenesulfonic acid [pCMBS]) lead to the following conclusions. As in intestinal cells, SA transport in Ricinus involves a pH-dependent carrier system sensitive to pCMBS; this carrier can translocate monohalogen analogs in the anionic form; the efficiency of phloem transport of hydroxylated benzoic acid derivatives is tightly dependent on the position of the hydroxyl group on the aromatic ring (SA corresponds to the optimal position) but moderately affected by halogen addition in position 5, which is known to increase plant defense. Furthermore, combining time-course experiments and pCMBS used as a tool, we give information about the localization of the SA carrier. SA uptake by epidermal cells (i.e. the step preceding the symplastic transport to veins) insensitive to pCMBS occurs via the ion-trap mechanism, whereas apoplastic vein loading involves a carrier-mediated mechanism (which is targeted by pCMBS) in addition to diffusion.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.109.140095</identifier><identifier>PMID: 19493970</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>4-Chloromercuribenzenesulfonate - metabolism ; 4-Chloromercuribenzenesulfonate - pharmacology ; Autoradiography ; Biological and medical sciences ; Biological Transport - drug effects ; Cell membranes ; Chromatography, High Pressure Liquid ; Computer software ; Cotyledon - drug effects ; Cotyledon - metabolism ; Cotyledons ; Diffusion - drug effects ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration - drug effects ; Life Sciences ; Mesas ; Modeling ; Models, Biological ; Molecules ; Phloem ; Phloem - drug effects ; Phloem - metabolism ; Phloem loading ; Phytopathology and phytopharmacy ; Plant physiology and development ; Plants ; Ricinus - drug effects ; Ricinus - metabolism ; Salicylic Acid - chemistry ; Salicylic Acid - metabolism ; Salicylic Acid - pharmacology ; Sucrose - metabolism ; Sucrose - pharmacology ; Time Factors ; Vegetal Biology ; Whole Plant and Ecophysiology</subject><ispartof>Plant physiology (Bethesda), 2009-08, Vol.150 (4), p.2081-2091</ispartof><rights>Copyright 2009 American Society of Plant Biologists</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-4c7210fcaf910127931b2fb60633e15bdea513005026a30fab21def506541bc33</citedby><orcidid>0000-0002-5899-8243 ; 0000-0001-7840-0619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537919$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537919$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21810761$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19493970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00422035$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rocher, Françoise</creatorcontrib><creatorcontrib>Chollet, Jean-François</creatorcontrib><creatorcontrib>Legros, Sandrine</creatorcontrib><creatorcontrib>Jousse, Cyril</creatorcontrib><creatorcontrib>Lemoine, Rémi</creatorcontrib><creatorcontrib>Faucher, Mireille</creatorcontrib><creatorcontrib>Bush, Daniel R</creatorcontrib><creatorcontrib>Bonnemain, Jean-Louis</creatorcontrib><title>Salicylic Acid Transport in Ricinus communis Involves a pH-Dependent Carrier System in Addition to Diffusion</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Despite its important functions in plant physiology and defense, the membrane transport mechanism of salicylic acid (SA) is poorly documented due to the general assumption that SA is taken up by plant cells via the ion trap mechanism. Using Ricinus communis seedlings and modeling tools (ACD LogD and Vega ZZ softwares), we show that phloem accumulation of SA and hydroxylated analogs is completely uncorrelated with the physicochemical parameters suitable for diffusion (number of hydrogen bond donors, polar surface area, and, especially, LogD values at apoplastic pHs and Δ LogD between apoplast and phloem sap pH values). These and other data (such as accumulation in phloem sap of the poorly permeant dissociated form of monohalogen derivatives from apoplast and inhibition of SA transport by the thiol reagent p-chloromercuribenzenesulfonic acid [pCMBS]) lead to the following conclusions. As in intestinal cells, SA transport in Ricinus involves a pH-dependent carrier system sensitive to pCMBS; this carrier can translocate monohalogen analogs in the anionic form; the efficiency of phloem transport of hydroxylated benzoic acid derivatives is tightly dependent on the position of the hydroxyl group on the aromatic ring (SA corresponds to the optimal position) but moderately affected by halogen addition in position 5, which is known to increase plant defense. Furthermore, combining time-course experiments and pCMBS used as a tool, we give information about the localization of the SA carrier. SA uptake by epidermal cells (i.e. the step preceding the symplastic transport to veins) insensitive to pCMBS occurs via the ion-trap mechanism, whereas apoplastic vein loading involves a carrier-mediated mechanism (which is targeted by pCMBS) in addition to diffusion.</description><subject>4-Chloromercuribenzenesulfonate - metabolism</subject><subject>4-Chloromercuribenzenesulfonate - pharmacology</subject><subject>Autoradiography</subject><subject>Biological and medical sciences</subject><subject>Biological Transport - drug effects</subject><subject>Cell membranes</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Computer software</subject><subject>Cotyledon - drug effects</subject><subject>Cotyledon - metabolism</subject><subject>Cotyledons</subject><subject>Diffusion - drug effects</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration - drug effects</subject><subject>Life Sciences</subject><subject>Mesas</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Molecules</subject><subject>Phloem</subject><subject>Phloem - drug effects</subject><subject>Phloem - metabolism</subject><subject>Phloem loading</subject><subject>Phytopathology and phytopharmacy</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Ricinus - drug effects</subject><subject>Ricinus - metabolism</subject><subject>Salicylic Acid - chemistry</subject><subject>Salicylic Acid - metabolism</subject><subject>Salicylic Acid - pharmacology</subject><subject>Sucrose - metabolism</subject><subject>Sucrose - pharmacology</subject><subject>Time Factors</subject><subject>Vegetal Biology</subject><subject>Whole Plant and Ecophysiology</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkc2P0zAQxSMEYsvCkSPgC0gcUmb8kcTHqgt0pUpIdPccOY4NXiVxsJNK_e_XVapyGM3Y7-cna16WvUdYIwL_No5rBLlGDiDFi2yFgtGcCl69zFYAaYaqkjfZmxifAAAZ8tfZDUoumSxhlXUH1Tl9SkU22rXkIaghjj5MxA3kt9NumCPRvu_nwUVyPxx9dzSRKDLu8jszmqE1w0S2KgRnAjmc4mT689NN27rJ-YFMntw5a-eYDm-zV1Z10by79Nvs8cf3h-0u3__6eb_d7HPNy3LKuS4pgtXKSgSkpWTYUNsUUDBmUDStUQIZgABaKAZWNRRbYwUUgmOjGbvNvi6-f1VXj8H1Kpxqr1y92-zr8x0ApxSYOGJivyzsGPy_2cSp7l3UpuvUYPwc66IUBedVmcB8AXXwMQZjr84I9TmKehzTKOslisR_vBjPTW_a__Rl9wn4fAFU1KqzafPaxStHsUIoi_MPPyzcU5x8uOocBCslyqR_WnSrfK3-hOTxeKApasCi4AJK9gwSiaKi</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Rocher, Françoise</creator><creator>Chollet, Jean-François</creator><creator>Legros, Sandrine</creator><creator>Jousse, Cyril</creator><creator>Lemoine, Rémi</creator><creator>Faucher, Mireille</creator><creator>Bush, Daniel R</creator><creator>Bonnemain, Jean-Louis</creator><general>American Society of Plant Biologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5899-8243</orcidid><orcidid>https://orcid.org/0000-0001-7840-0619</orcidid></search><sort><creationdate>20090801</creationdate><title>Salicylic Acid Transport in Ricinus communis Involves a pH-Dependent Carrier System in Addition to Diffusion</title><author>Rocher, Françoise ; Chollet, Jean-François ; Legros, Sandrine ; Jousse, Cyril ; Lemoine, Rémi ; Faucher, Mireille ; Bush, Daniel R ; Bonnemain, Jean-Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-4c7210fcaf910127931b2fb60633e15bdea513005026a30fab21def506541bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>4-Chloromercuribenzenesulfonate - metabolism</topic><topic>4-Chloromercuribenzenesulfonate - pharmacology</topic><topic>Autoradiography</topic><topic>Biological and medical sciences</topic><topic>Biological Transport - drug effects</topic><topic>Cell membranes</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Computer software</topic><topic>Cotyledon - drug effects</topic><topic>Cotyledon - metabolism</topic><topic>Cotyledons</topic><topic>Diffusion - drug effects</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration - drug effects</topic><topic>Life Sciences</topic><topic>Mesas</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Molecules</topic><topic>Phloem</topic><topic>Phloem - drug effects</topic><topic>Phloem - metabolism</topic><topic>Phloem loading</topic><topic>Phytopathology and phytopharmacy</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Ricinus - drug effects</topic><topic>Ricinus - metabolism</topic><topic>Salicylic Acid - chemistry</topic><topic>Salicylic Acid - metabolism</topic><topic>Salicylic Acid - pharmacology</topic><topic>Sucrose - metabolism</topic><topic>Sucrose - pharmacology</topic><topic>Time Factors</topic><topic>Vegetal Biology</topic><topic>Whole Plant and Ecophysiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocher, Françoise</creatorcontrib><creatorcontrib>Chollet, Jean-François</creatorcontrib><creatorcontrib>Legros, Sandrine</creatorcontrib><creatorcontrib>Jousse, Cyril</creatorcontrib><creatorcontrib>Lemoine, Rémi</creatorcontrib><creatorcontrib>Faucher, Mireille</creatorcontrib><creatorcontrib>Bush, Daniel R</creatorcontrib><creatorcontrib>Bonnemain, Jean-Louis</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocher, Françoise</au><au>Chollet, Jean-François</au><au>Legros, Sandrine</au><au>Jousse, Cyril</au><au>Lemoine, Rémi</au><au>Faucher, Mireille</au><au>Bush, Daniel R</au><au>Bonnemain, Jean-Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salicylic Acid Transport in Ricinus communis Involves a pH-Dependent Carrier System in Addition to Diffusion</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>150</volume><issue>4</issue><spage>2081</spage><epage>2091</epage><pages>2081-2091</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Despite its important functions in plant physiology and defense, the membrane transport mechanism of salicylic acid (SA) is poorly documented due to the general assumption that SA is taken up by plant cells via the ion trap mechanism. Using Ricinus communis seedlings and modeling tools (ACD LogD and Vega ZZ softwares), we show that phloem accumulation of SA and hydroxylated analogs is completely uncorrelated with the physicochemical parameters suitable for diffusion (number of hydrogen bond donors, polar surface area, and, especially, LogD values at apoplastic pHs and Δ LogD between apoplast and phloem sap pH values). These and other data (such as accumulation in phloem sap of the poorly permeant dissociated form of monohalogen derivatives from apoplast and inhibition of SA transport by the thiol reagent p-chloromercuribenzenesulfonic acid [pCMBS]) lead to the following conclusions. As in intestinal cells, SA transport in Ricinus involves a pH-dependent carrier system sensitive to pCMBS; this carrier can translocate monohalogen analogs in the anionic form; the efficiency of phloem transport of hydroxylated benzoic acid derivatives is tightly dependent on the position of the hydroxyl group on the aromatic ring (SA corresponds to the optimal position) but moderately affected by halogen addition in position 5, which is known to increase plant defense. Furthermore, combining time-course experiments and pCMBS used as a tool, we give information about the localization of the SA carrier. SA uptake by epidermal cells (i.e. the step preceding the symplastic transport to veins) insensitive to pCMBS occurs via the ion-trap mechanism, whereas apoplastic vein loading involves a carrier-mediated mechanism (which is targeted by pCMBS) in addition to diffusion.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>19493970</pmid><doi>10.1104/pp.109.140095</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5899-8243</orcidid><orcidid>https://orcid.org/0000-0001-7840-0619</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2009-08, Vol.150 (4), p.2081-2091 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00422035v1 |
source | MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB Electronic Journals Library |
subjects | 4-Chloromercuribenzenesulfonate - metabolism 4-Chloromercuribenzenesulfonate - pharmacology Autoradiography Biological and medical sciences Biological Transport - drug effects Cell membranes Chromatography, High Pressure Liquid Computer software Cotyledon - drug effects Cotyledon - metabolism Cotyledons Diffusion - drug effects Fundamental and applied biological sciences. Psychology Hydrogen-Ion Concentration - drug effects Life Sciences Mesas Modeling Models, Biological Molecules Phloem Phloem - drug effects Phloem - metabolism Phloem loading Phytopathology and phytopharmacy Plant physiology and development Plants Ricinus - drug effects Ricinus - metabolism Salicylic Acid - chemistry Salicylic Acid - metabolism Salicylic Acid - pharmacology Sucrose - metabolism Sucrose - pharmacology Time Factors Vegetal Biology Whole Plant and Ecophysiology |
title | Salicylic Acid Transport in Ricinus communis Involves a pH-Dependent Carrier System in Addition to Diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salicylic%20Acid%20Transport%20in%20Ricinus%20communis%20Involves%20a%20pH-Dependent%20Carrier%20System%20in%20Addition%20to%20Diffusion&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Rocher,%20Fran%C3%A7oise&rft.date=2009-08-01&rft.volume=150&rft.issue=4&rft.spage=2081&rft.epage=2091&rft.pages=2081-2091&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.109.140095&rft_dat=%3Cjstor_hal_p%3E40537919%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67564487&rft_id=info:pmid/19493970&rft_jstor_id=40537919&rfr_iscdi=true |