Salicylic Acid Transport in Ricinus communis Involves a pH-Dependent Carrier System in Addition to Diffusion

Despite its important functions in plant physiology and defense, the membrane transport mechanism of salicylic acid (SA) is poorly documented due to the general assumption that SA is taken up by plant cells via the ion trap mechanism. Using Ricinus communis seedlings and modeling tools (ACD LogD and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2009-08, Vol.150 (4), p.2081-2091
Hauptverfasser: Rocher, Françoise, Chollet, Jean-François, Legros, Sandrine, Jousse, Cyril, Lemoine, Rémi, Faucher, Mireille, Bush, Daniel R, Bonnemain, Jean-Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2091
container_issue 4
container_start_page 2081
container_title Plant physiology (Bethesda)
container_volume 150
creator Rocher, Françoise
Chollet, Jean-François
Legros, Sandrine
Jousse, Cyril
Lemoine, Rémi
Faucher, Mireille
Bush, Daniel R
Bonnemain, Jean-Louis
description Despite its important functions in plant physiology and defense, the membrane transport mechanism of salicylic acid (SA) is poorly documented due to the general assumption that SA is taken up by plant cells via the ion trap mechanism. Using Ricinus communis seedlings and modeling tools (ACD LogD and Vega ZZ softwares), we show that phloem accumulation of SA and hydroxylated analogs is completely uncorrelated with the physicochemical parameters suitable for diffusion (number of hydrogen bond donors, polar surface area, and, especially, LogD values at apoplastic pHs and Δ LogD between apoplast and phloem sap pH values). These and other data (such as accumulation in phloem sap of the poorly permeant dissociated form of monohalogen derivatives from apoplast and inhibition of SA transport by the thiol reagent p-chloromercuribenzenesulfonic acid [pCMBS]) lead to the following conclusions. As in intestinal cells, SA transport in Ricinus involves a pH-dependent carrier system sensitive to pCMBS; this carrier can translocate monohalogen analogs in the anionic form; the efficiency of phloem transport of hydroxylated benzoic acid derivatives is tightly dependent on the position of the hydroxyl group on the aromatic ring (SA corresponds to the optimal position) but moderately affected by halogen addition in position 5, which is known to increase plant defense. Furthermore, combining time-course experiments and pCMBS used as a tool, we give information about the localization of the SA carrier. SA uptake by epidermal cells (i.e. the step preceding the symplastic transport to veins) insensitive to pCMBS occurs via the ion-trap mechanism, whereas apoplastic vein loading involves a carrier-mediated mechanism (which is targeted by pCMBS) in addition to diffusion.
doi_str_mv 10.1104/pp.109.140095
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00422035v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537919</jstor_id><sourcerecordid>40537919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-4c7210fcaf910127931b2fb60633e15bdea513005026a30fab21def506541bc33</originalsourceid><addsrcrecordid>eNpFkc2P0zAQxSMEYsvCkSPgC0gcUmb8kcTHqgt0pUpIdPccOY4NXiVxsJNK_e_XVapyGM3Y7-cna16WvUdYIwL_No5rBLlGDiDFi2yFgtGcCl69zFYAaYaqkjfZmxifAAAZ8tfZDUoumSxhlXUH1Tl9SkU22rXkIaghjj5MxA3kt9NumCPRvu_nwUVyPxx9dzSRKDLu8jszmqE1w0S2KgRnAjmc4mT689NN27rJ-YFMntw5a-eYDm-zV1Z10by79Nvs8cf3h-0u3__6eb_d7HPNy3LKuS4pgtXKSgSkpWTYUNsUUDBmUDStUQIZgABaKAZWNRRbYwUUgmOjGbvNvi6-f1VXj8H1Kpxqr1y92-zr8x0ApxSYOGJivyzsGPy_2cSp7l3UpuvUYPwc66IUBedVmcB8AXXwMQZjr84I9TmKehzTKOslisR_vBjPTW_a__Rl9wn4fAFU1KqzafPaxStHsUIoi_MPPyzcU5x8uOocBCslyqR_WnSrfK3-hOTxeKApasCi4AJK9gwSiaKi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67564487</pqid></control><display><type>article</type><title>Salicylic Acid Transport in Ricinus communis Involves a pH-Dependent Carrier System in Addition to Diffusion</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB Electronic Journals Library</source><creator>Rocher, Françoise ; Chollet, Jean-François ; Legros, Sandrine ; Jousse, Cyril ; Lemoine, Rémi ; Faucher, Mireille ; Bush, Daniel R ; Bonnemain, Jean-Louis</creator><creatorcontrib>Rocher, Françoise ; Chollet, Jean-François ; Legros, Sandrine ; Jousse, Cyril ; Lemoine, Rémi ; Faucher, Mireille ; Bush, Daniel R ; Bonnemain, Jean-Louis</creatorcontrib><description>Despite its important functions in plant physiology and defense, the membrane transport mechanism of salicylic acid (SA) is poorly documented due to the general assumption that SA is taken up by plant cells via the ion trap mechanism. Using Ricinus communis seedlings and modeling tools (ACD LogD and Vega ZZ softwares), we show that phloem accumulation of SA and hydroxylated analogs is completely uncorrelated with the physicochemical parameters suitable for diffusion (number of hydrogen bond donors, polar surface area, and, especially, LogD values at apoplastic pHs and Δ LogD between apoplast and phloem sap pH values). These and other data (such as accumulation in phloem sap of the poorly permeant dissociated form of monohalogen derivatives from apoplast and inhibition of SA transport by the thiol reagent p-chloromercuribenzenesulfonic acid [pCMBS]) lead to the following conclusions. As in intestinal cells, SA transport in Ricinus involves a pH-dependent carrier system sensitive to pCMBS; this carrier can translocate monohalogen analogs in the anionic form; the efficiency of phloem transport of hydroxylated benzoic acid derivatives is tightly dependent on the position of the hydroxyl group on the aromatic ring (SA corresponds to the optimal position) but moderately affected by halogen addition in position 5, which is known to increase plant defense. Furthermore, combining time-course experiments and pCMBS used as a tool, we give information about the localization of the SA carrier. SA uptake by epidermal cells (i.e. the step preceding the symplastic transport to veins) insensitive to pCMBS occurs via the ion-trap mechanism, whereas apoplastic vein loading involves a carrier-mediated mechanism (which is targeted by pCMBS) in addition to diffusion.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.109.140095</identifier><identifier>PMID: 19493970</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>4-Chloromercuribenzenesulfonate - metabolism ; 4-Chloromercuribenzenesulfonate - pharmacology ; Autoradiography ; Biological and medical sciences ; Biological Transport - drug effects ; Cell membranes ; Chromatography, High Pressure Liquid ; Computer software ; Cotyledon - drug effects ; Cotyledon - metabolism ; Cotyledons ; Diffusion - drug effects ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration - drug effects ; Life Sciences ; Mesas ; Modeling ; Models, Biological ; Molecules ; Phloem ; Phloem - drug effects ; Phloem - metabolism ; Phloem loading ; Phytopathology and phytopharmacy ; Plant physiology and development ; Plants ; Ricinus - drug effects ; Ricinus - metabolism ; Salicylic Acid - chemistry ; Salicylic Acid - metabolism ; Salicylic Acid - pharmacology ; Sucrose - metabolism ; Sucrose - pharmacology ; Time Factors ; Vegetal Biology ; Whole Plant and Ecophysiology</subject><ispartof>Plant physiology (Bethesda), 2009-08, Vol.150 (4), p.2081-2091</ispartof><rights>Copyright 2009 American Society of Plant Biologists</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-4c7210fcaf910127931b2fb60633e15bdea513005026a30fab21def506541bc33</citedby><orcidid>0000-0002-5899-8243 ; 0000-0001-7840-0619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537919$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537919$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21810761$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19493970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00422035$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rocher, Françoise</creatorcontrib><creatorcontrib>Chollet, Jean-François</creatorcontrib><creatorcontrib>Legros, Sandrine</creatorcontrib><creatorcontrib>Jousse, Cyril</creatorcontrib><creatorcontrib>Lemoine, Rémi</creatorcontrib><creatorcontrib>Faucher, Mireille</creatorcontrib><creatorcontrib>Bush, Daniel R</creatorcontrib><creatorcontrib>Bonnemain, Jean-Louis</creatorcontrib><title>Salicylic Acid Transport in Ricinus communis Involves a pH-Dependent Carrier System in Addition to Diffusion</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Despite its important functions in plant physiology and defense, the membrane transport mechanism of salicylic acid (SA) is poorly documented due to the general assumption that SA is taken up by plant cells via the ion trap mechanism. Using Ricinus communis seedlings and modeling tools (ACD LogD and Vega ZZ softwares), we show that phloem accumulation of SA and hydroxylated analogs is completely uncorrelated with the physicochemical parameters suitable for diffusion (number of hydrogen bond donors, polar surface area, and, especially, LogD values at apoplastic pHs and Δ LogD between apoplast and phloem sap pH values). These and other data (such as accumulation in phloem sap of the poorly permeant dissociated form of monohalogen derivatives from apoplast and inhibition of SA transport by the thiol reagent p-chloromercuribenzenesulfonic acid [pCMBS]) lead to the following conclusions. As in intestinal cells, SA transport in Ricinus involves a pH-dependent carrier system sensitive to pCMBS; this carrier can translocate monohalogen analogs in the anionic form; the efficiency of phloem transport of hydroxylated benzoic acid derivatives is tightly dependent on the position of the hydroxyl group on the aromatic ring (SA corresponds to the optimal position) but moderately affected by halogen addition in position 5, which is known to increase plant defense. Furthermore, combining time-course experiments and pCMBS used as a tool, we give information about the localization of the SA carrier. SA uptake by epidermal cells (i.e. the step preceding the symplastic transport to veins) insensitive to pCMBS occurs via the ion-trap mechanism, whereas apoplastic vein loading involves a carrier-mediated mechanism (which is targeted by pCMBS) in addition to diffusion.</description><subject>4-Chloromercuribenzenesulfonate - metabolism</subject><subject>4-Chloromercuribenzenesulfonate - pharmacology</subject><subject>Autoradiography</subject><subject>Biological and medical sciences</subject><subject>Biological Transport - drug effects</subject><subject>Cell membranes</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Computer software</subject><subject>Cotyledon - drug effects</subject><subject>Cotyledon - metabolism</subject><subject>Cotyledons</subject><subject>Diffusion - drug effects</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration - drug effects</subject><subject>Life Sciences</subject><subject>Mesas</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Molecules</subject><subject>Phloem</subject><subject>Phloem - drug effects</subject><subject>Phloem - metabolism</subject><subject>Phloem loading</subject><subject>Phytopathology and phytopharmacy</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Ricinus - drug effects</subject><subject>Ricinus - metabolism</subject><subject>Salicylic Acid - chemistry</subject><subject>Salicylic Acid - metabolism</subject><subject>Salicylic Acid - pharmacology</subject><subject>Sucrose - metabolism</subject><subject>Sucrose - pharmacology</subject><subject>Time Factors</subject><subject>Vegetal Biology</subject><subject>Whole Plant and Ecophysiology</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkc2P0zAQxSMEYsvCkSPgC0gcUmb8kcTHqgt0pUpIdPccOY4NXiVxsJNK_e_XVapyGM3Y7-cna16WvUdYIwL_No5rBLlGDiDFi2yFgtGcCl69zFYAaYaqkjfZmxifAAAZ8tfZDUoumSxhlXUH1Tl9SkU22rXkIaghjj5MxA3kt9NumCPRvu_nwUVyPxx9dzSRKDLu8jszmqE1w0S2KgRnAjmc4mT689NN27rJ-YFMntw5a-eYDm-zV1Z10by79Nvs8cf3h-0u3__6eb_d7HPNy3LKuS4pgtXKSgSkpWTYUNsUUDBmUDStUQIZgABaKAZWNRRbYwUUgmOjGbvNvi6-f1VXj8H1Kpxqr1y92-zr8x0ApxSYOGJivyzsGPy_2cSp7l3UpuvUYPwc66IUBedVmcB8AXXwMQZjr84I9TmKehzTKOslisR_vBjPTW_a__Rl9wn4fAFU1KqzafPaxStHsUIoi_MPPyzcU5x8uOocBCslyqR_WnSrfK3-hOTxeKApasCi4AJK9gwSiaKi</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Rocher, Françoise</creator><creator>Chollet, Jean-François</creator><creator>Legros, Sandrine</creator><creator>Jousse, Cyril</creator><creator>Lemoine, Rémi</creator><creator>Faucher, Mireille</creator><creator>Bush, Daniel R</creator><creator>Bonnemain, Jean-Louis</creator><general>American Society of Plant Biologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5899-8243</orcidid><orcidid>https://orcid.org/0000-0001-7840-0619</orcidid></search><sort><creationdate>20090801</creationdate><title>Salicylic Acid Transport in Ricinus communis Involves a pH-Dependent Carrier System in Addition to Diffusion</title><author>Rocher, Françoise ; Chollet, Jean-François ; Legros, Sandrine ; Jousse, Cyril ; Lemoine, Rémi ; Faucher, Mireille ; Bush, Daniel R ; Bonnemain, Jean-Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-4c7210fcaf910127931b2fb60633e15bdea513005026a30fab21def506541bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>4-Chloromercuribenzenesulfonate - metabolism</topic><topic>4-Chloromercuribenzenesulfonate - pharmacology</topic><topic>Autoradiography</topic><topic>Biological and medical sciences</topic><topic>Biological Transport - drug effects</topic><topic>Cell membranes</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Computer software</topic><topic>Cotyledon - drug effects</topic><topic>Cotyledon - metabolism</topic><topic>Cotyledons</topic><topic>Diffusion - drug effects</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration - drug effects</topic><topic>Life Sciences</topic><topic>Mesas</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Molecules</topic><topic>Phloem</topic><topic>Phloem - drug effects</topic><topic>Phloem - metabolism</topic><topic>Phloem loading</topic><topic>Phytopathology and phytopharmacy</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Ricinus - drug effects</topic><topic>Ricinus - metabolism</topic><topic>Salicylic Acid - chemistry</topic><topic>Salicylic Acid - metabolism</topic><topic>Salicylic Acid - pharmacology</topic><topic>Sucrose - metabolism</topic><topic>Sucrose - pharmacology</topic><topic>Time Factors</topic><topic>Vegetal Biology</topic><topic>Whole Plant and Ecophysiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocher, Françoise</creatorcontrib><creatorcontrib>Chollet, Jean-François</creatorcontrib><creatorcontrib>Legros, Sandrine</creatorcontrib><creatorcontrib>Jousse, Cyril</creatorcontrib><creatorcontrib>Lemoine, Rémi</creatorcontrib><creatorcontrib>Faucher, Mireille</creatorcontrib><creatorcontrib>Bush, Daniel R</creatorcontrib><creatorcontrib>Bonnemain, Jean-Louis</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocher, Françoise</au><au>Chollet, Jean-François</au><au>Legros, Sandrine</au><au>Jousse, Cyril</au><au>Lemoine, Rémi</au><au>Faucher, Mireille</au><au>Bush, Daniel R</au><au>Bonnemain, Jean-Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salicylic Acid Transport in Ricinus communis Involves a pH-Dependent Carrier System in Addition to Diffusion</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>150</volume><issue>4</issue><spage>2081</spage><epage>2091</epage><pages>2081-2091</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Despite its important functions in plant physiology and defense, the membrane transport mechanism of salicylic acid (SA) is poorly documented due to the general assumption that SA is taken up by plant cells via the ion trap mechanism. Using Ricinus communis seedlings and modeling tools (ACD LogD and Vega ZZ softwares), we show that phloem accumulation of SA and hydroxylated analogs is completely uncorrelated with the physicochemical parameters suitable for diffusion (number of hydrogen bond donors, polar surface area, and, especially, LogD values at apoplastic pHs and Δ LogD between apoplast and phloem sap pH values). These and other data (such as accumulation in phloem sap of the poorly permeant dissociated form of monohalogen derivatives from apoplast and inhibition of SA transport by the thiol reagent p-chloromercuribenzenesulfonic acid [pCMBS]) lead to the following conclusions. As in intestinal cells, SA transport in Ricinus involves a pH-dependent carrier system sensitive to pCMBS; this carrier can translocate monohalogen analogs in the anionic form; the efficiency of phloem transport of hydroxylated benzoic acid derivatives is tightly dependent on the position of the hydroxyl group on the aromatic ring (SA corresponds to the optimal position) but moderately affected by halogen addition in position 5, which is known to increase plant defense. Furthermore, combining time-course experiments and pCMBS used as a tool, we give information about the localization of the SA carrier. SA uptake by epidermal cells (i.e. the step preceding the symplastic transport to veins) insensitive to pCMBS occurs via the ion-trap mechanism, whereas apoplastic vein loading involves a carrier-mediated mechanism (which is targeted by pCMBS) in addition to diffusion.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>19493970</pmid><doi>10.1104/pp.109.140095</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5899-8243</orcidid><orcidid>https://orcid.org/0000-0001-7840-0619</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2009-08, Vol.150 (4), p.2081-2091
issn 0032-0889
1532-2548
language eng
recordid cdi_hal_primary_oai_HAL_hal_00422035v1
source MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB Electronic Journals Library
subjects 4-Chloromercuribenzenesulfonate - metabolism
4-Chloromercuribenzenesulfonate - pharmacology
Autoradiography
Biological and medical sciences
Biological Transport - drug effects
Cell membranes
Chromatography, High Pressure Liquid
Computer software
Cotyledon - drug effects
Cotyledon - metabolism
Cotyledons
Diffusion - drug effects
Fundamental and applied biological sciences. Psychology
Hydrogen-Ion Concentration - drug effects
Life Sciences
Mesas
Modeling
Models, Biological
Molecules
Phloem
Phloem - drug effects
Phloem - metabolism
Phloem loading
Phytopathology and phytopharmacy
Plant physiology and development
Plants
Ricinus - drug effects
Ricinus - metabolism
Salicylic Acid - chemistry
Salicylic Acid - metabolism
Salicylic Acid - pharmacology
Sucrose - metabolism
Sucrose - pharmacology
Time Factors
Vegetal Biology
Whole Plant and Ecophysiology
title Salicylic Acid Transport in Ricinus communis Involves a pH-Dependent Carrier System in Addition to Diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salicylic%20Acid%20Transport%20in%20Ricinus%20communis%20Involves%20a%20pH-Dependent%20Carrier%20System%20in%20Addition%20to%20Diffusion&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Rocher,%20Fran%C3%A7oise&rft.date=2009-08-01&rft.volume=150&rft.issue=4&rft.spage=2081&rft.epage=2091&rft.pages=2081-2091&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.109.140095&rft_dat=%3Cjstor_hal_p%3E40537919%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67564487&rft_id=info:pmid/19493970&rft_jstor_id=40537919&rfr_iscdi=true