Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays

Abstract Understanding cellular systems requires identification and analysis of their multiple components and determination of how they act together and are regulated. Microarray technology is one of the few tools that is able to solve such problems. It is based on high-throughput recognition of a t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Critical reviews in oncology/hematology 2010-04, Vol.74 (1), p.1-15
Hauptverfasser: Rousserie, Gilles, Sukhanova, Alyona, Even-Desrumeaux, Klervi, Fleury, Fabrice, Chames, Patrick, Baty, Daniel, Oleinikov, Vladimir, Pluot, Michel, Cohen, Jacques H.M, Nabiev, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 1
container_title Critical reviews in oncology/hematology
container_volume 74
creator Rousserie, Gilles
Sukhanova, Alyona
Even-Desrumeaux, Klervi
Fleury, Fabrice
Chames, Patrick
Baty, Daniel
Oleinikov, Vladimir
Pluot, Michel
Cohen, Jacques H.M
Nabiev, Igor
description Abstract Understanding cellular systems requires identification and analysis of their multiple components and determination of how they act together and are regulated. Microarray technology is one of the few tools that is able to solve such problems. It is based on high-throughput recognition of a target to the probe and has the potential to simultaneously measure the presence of numerous molecules in multiplexed tests, all contained in a small drop of test fluid. Microarrays allow the parallel analysis of genomic or proteomic content in healthy versus disease-affected or altered tissues or cells. The signal read-out from the microarrays is done with organic dyes which often suffer of photobleaching, low brightness and background fluorescence. Recent data show that the use of fluorescent nanocrystals named “quantum dots” (QDs) allows to push these limits away. QDs are sufficiently bright to be detected as individual particles, extremely resistant against photobleaching and provide unique possibilities for multiplexing, thus supplying the microarray technology with a novel read-out option enabling the sensitivity of detection to reach the single-molecule level. This paper reviews QDs applications to microarray-based detection and demonstrates how the combination of microarray and QDs technologies may increase sensitivity and highly parallel capacities of multiplexed microarrays. Such a combination should provide the breakthrough results in drug discovery, cancer diagnosis and establish new therapeutic approaches through the identification of binding target molecules and better understanding of cell signalling pathways.
doi_str_mv 10.1016/j.critrevonc.2009.04.006
format Article
fullrecord <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00415311v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1040842809000833</els_id><sourcerecordid>19467882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-8b15f78e6feebd15f711e1e3ebb29cc9f679f62cc06784e5f0b61e1b6077ae2e3</originalsourceid><addsrcrecordid>eNqNUcFq3DAQFaWhSZP-QvG1B7sjWyvLl0Ia0qaw0MMmZyFLY6qtbW0leen-fcdsaKCngsQMw3tvZt4wVnCoOHD5cV_Z6HPEY5htVQN0FYgKQL5iV1y1XQlC8teUg4BSiVpdsrcp7QFACNm-YZe8o6hUfcV2O5y8DbNbbA6x-LWYOS9T4UJOxUCFaRmzP4z4G13R-1A6zGizD3NBL4XRuzJlk7EglRhMjOaUbtjFYMaE757jNXv6cv9491Buv3_9dne7La1oIJeq55uhVSgHxN6tOefIscG-rztru0G29GtrgWYVuBmglwToJbStwRqba_bhrPvDjPoQ_WTiSQfj9cPtVq812pdvGs6PnLDqjKUpU4o4_CVw0Kuneq9fPNWrpxoEKUiivj9TD0s_oXshPptIgM9nANKyR49RJ-txtuh8JLO0C_5_unz6R8SOfvbWjD_xhGkfljiTmZrrVGvQu_W262mho7Oqpmn-AMHCpBY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Rousserie, Gilles ; Sukhanova, Alyona ; Even-Desrumeaux, Klervi ; Fleury, Fabrice ; Chames, Patrick ; Baty, Daniel ; Oleinikov, Vladimir ; Pluot, Michel ; Cohen, Jacques H.M ; Nabiev, Igor</creator><creatorcontrib>Rousserie, Gilles ; Sukhanova, Alyona ; Even-Desrumeaux, Klervi ; Fleury, Fabrice ; Chames, Patrick ; Baty, Daniel ; Oleinikov, Vladimir ; Pluot, Michel ; Cohen, Jacques H.M ; Nabiev, Igor</creatorcontrib><description>Abstract Understanding cellular systems requires identification and analysis of their multiple components and determination of how they act together and are regulated. Microarray technology is one of the few tools that is able to solve such problems. It is based on high-throughput recognition of a target to the probe and has the potential to simultaneously measure the presence of numerous molecules in multiplexed tests, all contained in a small drop of test fluid. Microarrays allow the parallel analysis of genomic or proteomic content in healthy versus disease-affected or altered tissues or cells. The signal read-out from the microarrays is done with organic dyes which often suffer of photobleaching, low brightness and background fluorescence. Recent data show that the use of fluorescent nanocrystals named “quantum dots” (QDs) allows to push these limits away. QDs are sufficiently bright to be detected as individual particles, extremely resistant against photobleaching and provide unique possibilities for multiplexing, thus supplying the microarray technology with a novel read-out option enabling the sensitivity of detection to reach the single-molecule level. This paper reviews QDs applications to microarray-based detection and demonstrates how the combination of microarray and QDs technologies may increase sensitivity and highly parallel capacities of multiplexed microarrays. Such a combination should provide the breakthrough results in drug discovery, cancer diagnosis and establish new therapeutic approaches through the identification of binding target molecules and better understanding of cell signalling pathways.</description><identifier>ISSN: 1040-8428</identifier><identifier>EISSN: 1879-0461</identifier><identifier>DOI: 10.1016/j.critrevonc.2009.04.006</identifier><identifier>PMID: 19467882</identifier><language>eng</language><publisher>Netherlands: Elsevier Ireland Ltd</publisher><subject>Animals ; Biomarkers - analysis ; Biotechnology ; Computer Science ; Diagnosis ; DNA ; Fluorescent nanocrystals ; Gene Expression Profiling ; Genetic Markers ; Hematology, Oncology and Palliative Medicine ; High-Throughput Screening Assays - methods ; Humans ; Life Sciences ; Microarray ; Molecular Probe Techniques ; Molecular Probes ; Multiplexed analysis ; Oligonucleotide Array Sequence Analysis ; Predictive Value of Tests ; Protein Array Analysis ; Proteins ; Quantum Dots ; Reproducibility of Results</subject><ispartof>Critical reviews in oncology/hematology, 2010-04, Vol.74 (1), p.1-15</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2009 Elsevier Ireland Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-8b15f78e6feebd15f711e1e3ebb29cc9f679f62cc06784e5f0b61e1b6077ae2e3</citedby><cites>FETCH-LOGICAL-c430t-8b15f78e6feebd15f711e1e3ebb29cc9f679f62cc06784e5f0b61e1b6077ae2e3</cites><orcidid>0000-0002-6104-6286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.critrevonc.2009.04.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19467882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00415311$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rousserie, Gilles</creatorcontrib><creatorcontrib>Sukhanova, Alyona</creatorcontrib><creatorcontrib>Even-Desrumeaux, Klervi</creatorcontrib><creatorcontrib>Fleury, Fabrice</creatorcontrib><creatorcontrib>Chames, Patrick</creatorcontrib><creatorcontrib>Baty, Daniel</creatorcontrib><creatorcontrib>Oleinikov, Vladimir</creatorcontrib><creatorcontrib>Pluot, Michel</creatorcontrib><creatorcontrib>Cohen, Jacques H.M</creatorcontrib><creatorcontrib>Nabiev, Igor</creatorcontrib><title>Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays</title><title>Critical reviews in oncology/hematology</title><addtitle>Crit Rev Oncol Hematol</addtitle><description>Abstract Understanding cellular systems requires identification and analysis of their multiple components and determination of how they act together and are regulated. Microarray technology is one of the few tools that is able to solve such problems. It is based on high-throughput recognition of a target to the probe and has the potential to simultaneously measure the presence of numerous molecules in multiplexed tests, all contained in a small drop of test fluid. Microarrays allow the parallel analysis of genomic or proteomic content in healthy versus disease-affected or altered tissues or cells. The signal read-out from the microarrays is done with organic dyes which often suffer of photobleaching, low brightness and background fluorescence. Recent data show that the use of fluorescent nanocrystals named “quantum dots” (QDs) allows to push these limits away. QDs are sufficiently bright to be detected as individual particles, extremely resistant against photobleaching and provide unique possibilities for multiplexing, thus supplying the microarray technology with a novel read-out option enabling the sensitivity of detection to reach the single-molecule level. This paper reviews QDs applications to microarray-based detection and demonstrates how the combination of microarray and QDs technologies may increase sensitivity and highly parallel capacities of multiplexed microarrays. Such a combination should provide the breakthrough results in drug discovery, cancer diagnosis and establish new therapeutic approaches through the identification of binding target molecules and better understanding of cell signalling pathways.</description><subject>Animals</subject><subject>Biomarkers - analysis</subject><subject>Biotechnology</subject><subject>Computer Science</subject><subject>Diagnosis</subject><subject>DNA</subject><subject>Fluorescent nanocrystals</subject><subject>Gene Expression Profiling</subject><subject>Genetic Markers</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Microarray</subject><subject>Molecular Probe Techniques</subject><subject>Molecular Probes</subject><subject>Multiplexed analysis</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Predictive Value of Tests</subject><subject>Protein Array Analysis</subject><subject>Proteins</subject><subject>Quantum Dots</subject><subject>Reproducibility of Results</subject><issn>1040-8428</issn><issn>1879-0461</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcFq3DAQFaWhSZP-QvG1B7sjWyvLl0Ia0qaw0MMmZyFLY6qtbW0leen-fcdsaKCngsQMw3tvZt4wVnCoOHD5cV_Z6HPEY5htVQN0FYgKQL5iV1y1XQlC8teUg4BSiVpdsrcp7QFACNm-YZe8o6hUfcV2O5y8DbNbbA6x-LWYOS9T4UJOxUCFaRmzP4z4G13R-1A6zGizD3NBL4XRuzJlk7EglRhMjOaUbtjFYMaE757jNXv6cv9491Buv3_9dne7La1oIJeq55uhVSgHxN6tOefIscG-rztru0G29GtrgWYVuBmglwToJbStwRqba_bhrPvDjPoQ_WTiSQfj9cPtVq812pdvGs6PnLDqjKUpU4o4_CVw0Kuneq9fPNWrpxoEKUiivj9TD0s_oXshPptIgM9nANKyR49RJ-txtuh8JLO0C_5_unz6R8SOfvbWjD_xhGkfljiTmZrrVGvQu_W262mho7Oqpmn-AMHCpBY</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Rousserie, Gilles</creator><creator>Sukhanova, Alyona</creator><creator>Even-Desrumeaux, Klervi</creator><creator>Fleury, Fabrice</creator><creator>Chames, Patrick</creator><creator>Baty, Daniel</creator><creator>Oleinikov, Vladimir</creator><creator>Pluot, Michel</creator><creator>Cohen, Jacques H.M</creator><creator>Nabiev, Igor</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6104-6286</orcidid></search><sort><creationdate>20100401</creationdate><title>Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays</title><author>Rousserie, Gilles ; Sukhanova, Alyona ; Even-Desrumeaux, Klervi ; Fleury, Fabrice ; Chames, Patrick ; Baty, Daniel ; Oleinikov, Vladimir ; Pluot, Michel ; Cohen, Jacques H.M ; Nabiev, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-8b15f78e6feebd15f711e1e3ebb29cc9f679f62cc06784e5f0b61e1b6077ae2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biomarkers - analysis</topic><topic>Biotechnology</topic><topic>Computer Science</topic><topic>Diagnosis</topic><topic>DNA</topic><topic>Fluorescent nanocrystals</topic><topic>Gene Expression Profiling</topic><topic>Genetic Markers</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Microarray</topic><topic>Molecular Probe Techniques</topic><topic>Molecular Probes</topic><topic>Multiplexed analysis</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Predictive Value of Tests</topic><topic>Protein Array Analysis</topic><topic>Proteins</topic><topic>Quantum Dots</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rousserie, Gilles</creatorcontrib><creatorcontrib>Sukhanova, Alyona</creatorcontrib><creatorcontrib>Even-Desrumeaux, Klervi</creatorcontrib><creatorcontrib>Fleury, Fabrice</creatorcontrib><creatorcontrib>Chames, Patrick</creatorcontrib><creatorcontrib>Baty, Daniel</creatorcontrib><creatorcontrib>Oleinikov, Vladimir</creatorcontrib><creatorcontrib>Pluot, Michel</creatorcontrib><creatorcontrib>Cohen, Jacques H.M</creatorcontrib><creatorcontrib>Nabiev, Igor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Critical reviews in oncology/hematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rousserie, Gilles</au><au>Sukhanova, Alyona</au><au>Even-Desrumeaux, Klervi</au><au>Fleury, Fabrice</au><au>Chames, Patrick</au><au>Baty, Daniel</au><au>Oleinikov, Vladimir</au><au>Pluot, Michel</au><au>Cohen, Jacques H.M</au><au>Nabiev, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays</atitle><jtitle>Critical reviews in oncology/hematology</jtitle><addtitle>Crit Rev Oncol Hematol</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>74</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1040-8428</issn><eissn>1879-0461</eissn><abstract>Abstract Understanding cellular systems requires identification and analysis of their multiple components and determination of how they act together and are regulated. Microarray technology is one of the few tools that is able to solve such problems. It is based on high-throughput recognition of a target to the probe and has the potential to simultaneously measure the presence of numerous molecules in multiplexed tests, all contained in a small drop of test fluid. Microarrays allow the parallel analysis of genomic or proteomic content in healthy versus disease-affected or altered tissues or cells. The signal read-out from the microarrays is done with organic dyes which often suffer of photobleaching, low brightness and background fluorescence. Recent data show that the use of fluorescent nanocrystals named “quantum dots” (QDs) allows to push these limits away. QDs are sufficiently bright to be detected as individual particles, extremely resistant against photobleaching and provide unique possibilities for multiplexing, thus supplying the microarray technology with a novel read-out option enabling the sensitivity of detection to reach the single-molecule level. This paper reviews QDs applications to microarray-based detection and demonstrates how the combination of microarray and QDs technologies may increase sensitivity and highly parallel capacities of multiplexed microarrays. Such a combination should provide the breakthrough results in drug discovery, cancer diagnosis and establish new therapeutic approaches through the identification of binding target molecules and better understanding of cell signalling pathways.</abstract><cop>Netherlands</cop><pub>Elsevier Ireland Ltd</pub><pmid>19467882</pmid><doi>10.1016/j.critrevonc.2009.04.006</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6104-6286</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-8428
ispartof Critical reviews in oncology/hematology, 2010-04, Vol.74 (1), p.1-15
issn 1040-8428
1879-0461
language eng
recordid cdi_hal_primary_oai_HAL_hal_00415311v1
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Biomarkers - analysis
Biotechnology
Computer Science
Diagnosis
DNA
Fluorescent nanocrystals
Gene Expression Profiling
Genetic Markers
Hematology, Oncology and Palliative Medicine
High-Throughput Screening Assays - methods
Humans
Life Sciences
Microarray
Molecular Probe Techniques
Molecular Probes
Multiplexed analysis
Oligonucleotide Array Sequence Analysis
Predictive Value of Tests
Protein Array Analysis
Proteins
Quantum Dots
Reproducibility of Results
title Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconductor%20quantum%20dots%20for%20multiplexed%20bio-detection%20on%20solid-state%20microarrays&rft.jtitle=Critical%20reviews%20in%20oncology/hematology&rft.au=Rousserie,%20Gilles&rft.date=2010-04-01&rft.volume=74&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1040-8428&rft.eissn=1879-0461&rft_id=info:doi/10.1016/j.critrevonc.2009.04.006&rft_dat=%3Cpubmed_hal_p%3E19467882%3C/pubmed_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19467882&rft_els_id=S1040842809000833&rfr_iscdi=true