Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations

The long‐term temperature data sets obtained by Rayleigh lidars at six different locations from low to high latitudes within the Network for the Detection of Atmospheric Composition Change (NDACC) were used to derive the annual oscillations (AO) and semiannual oscillations (SAO) of middle atmosphere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. B. Solid Earth 2009-10, Vol.114 (D20), p.n/a
Hauptverfasser: Dou, Xiankang, Li, Tao, Xu, Jiyao, Liu, Han-Li, Xue, Xianghui, Wang, Shui, Leblanc, Thierry, McDermid, I. Stuart, Hauchecorne, Alain, Keckhut, Philippe, Bencherif, Hassan, Heinselman, Craig, Steinbrecht, Wolfgang, Mlynczak, M. G., Russell III, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D20
container_start_page
container_title Journal of Geophysical Research. B. Solid Earth
container_volume 114
creator Dou, Xiankang
Li, Tao
Xu, Jiyao
Liu, Han-Li
Xue, Xianghui
Wang, Shui
Leblanc, Thierry
McDermid, I. Stuart
Hauchecorne, Alain
Keckhut, Philippe
Bencherif, Hassan
Heinselman, Craig
Steinbrecht, Wolfgang
Mlynczak, M. G.
Russell III, J. M.
description The long‐term temperature data sets obtained by Rayleigh lidars at six different locations from low to high latitudes within the Network for the Detection of Atmospheric Composition Change (NDACC) were used to derive the annual oscillations (AO) and semiannual oscillations (SAO) of middle atmosphere temperature: Reunion Island (21.8°S); Mauna Loa Observatory, Hawaii (19.5°N); Table Mountain Facility, California (34.4°N); Observatoire de Haute Provence, France (43.9°N); Hohenpeissenberg, Germany (47.8°N); Sondre Stromfjord, Greenland (67.0°N). The results were compared with those derived from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED) satellite. The zonal mean temperatures at similar latitudes show good agreement. The observations also reveal that the AO dominates the seasonal oscillations in both the stratosphere and the mesosphere at middle and high latitudes, with the amplitudes increasing poleward. The SAO oscillations are weaker at all six sites. The oscillations in the upper mesosphere are usually stronger than those in the upper stratosphere with a local minimum near 50–65 km. The upper mesospheric signals are clearly out of phase with upper stratospheric signals. Some differences between lidar and SABER results were found in both the stratosphere and mesosphere. These could be due to: the difference in data sampling between ground‐based and space‐based instruments, the length of data set, the tidal aliasing owing to the temperature AO and SAO since lidar data are nighttime only, and lidar temperature analysis algorithms. The seasonal oscillations of tidal amplitudes derived from SABER observations suggests that the tidal aliasing of the lidar temperature AO and SAO in the upper mesosphere may over‐ or under‐estimate the real temperature oscillations, depending on the tidal phases. In addition, the possibly unrealistic seasonal oscillations embedded in the climatological models (e.g., MSIS or CIRA) at the reference point for lidar temperature analysis may also affect the lidar results in the top part of the profiles (usually in the upper mesosphere).
doi_str_mv 10.1029/2008JD011654
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00406337v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754559824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5791-ff87c8cfadcce07ec4d0cb10cab9671b45660486dee090b2d56eceabceaff5f33</originalsourceid><addsrcrecordid>eNqFkl1v0zAUhiMEEtXYHT_AN3xJhNmOP5LLbi3tpvKhbmyXluOcUENSFzvd6B_gd-OQquKqs2TZsp73PcevTpK8JPgDwbQ4oxjnVxNMiODsSTKihIuUUkyfJiNMWJ5iSuXz5DSEHzguxgXDZJT8uQYd3Fo3yAVjm0Z31q0DcjVqbVU1gHTXurBZgQfUQbsBr7ttvLsygL-HCpU7tNS7Buz3FWpspX1Ael2hbgXWI-PajfY29JYPtluhm8tP08nZ9fh8utxbDAVfJM9q3QQ43Z8nybeP05uLebr4Mru8GC9Sw2VB0rrOpclNrStjAEswrMKmJNjoshCSlPFXArNcVAC4wCWtuAADuoy7rnmdZSfJu8F3pRu18bbVfqectmo-Xqj-LSaDRZbJexLZNwO78e7XFkKnWhsMxIzW4LZBSc44L3LKIvn6KJkJRiXj9FGQkoxxjPs-3x4FiZSSUIIJfhyNxf_5ioi-H1DjXQge6kMEBKt-iNT_QxTxV3tnHYxuaq_XxoaDpncVBe07yAbuwTawO-qprmbLCeGM9fGmg8qGDn4fVNr_VEJmkqu7zzNFv84ny1t-q-6yvw235OA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642213456</pqid></control><display><type>article</type><title>Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library AGU 2017</source><source>Alma/SFX Local Collection</source><creator>Dou, Xiankang ; Li, Tao ; Xu, Jiyao ; Liu, Han-Li ; Xue, Xianghui ; Wang, Shui ; Leblanc, Thierry ; McDermid, I. Stuart ; Hauchecorne, Alain ; Keckhut, Philippe ; Bencherif, Hassan ; Heinselman, Craig ; Steinbrecht, Wolfgang ; Mlynczak, M. G. ; Russell III, J. M.</creator><creatorcontrib>Dou, Xiankang ; Li, Tao ; Xu, Jiyao ; Liu, Han-Li ; Xue, Xianghui ; Wang, Shui ; Leblanc, Thierry ; McDermid, I. Stuart ; Hauchecorne, Alain ; Keckhut, Philippe ; Bencherif, Hassan ; Heinselman, Craig ; Steinbrecht, Wolfgang ; Mlynczak, M. G. ; Russell III, J. M.</creatorcontrib><description>The long‐term temperature data sets obtained by Rayleigh lidars at six different locations from low to high latitudes within the Network for the Detection of Atmospheric Composition Change (NDACC) were used to derive the annual oscillations (AO) and semiannual oscillations (SAO) of middle atmosphere temperature: Reunion Island (21.8°S); Mauna Loa Observatory, Hawaii (19.5°N); Table Mountain Facility, California (34.4°N); Observatoire de Haute Provence, France (43.9°N); Hohenpeissenberg, Germany (47.8°N); Sondre Stromfjord, Greenland (67.0°N). The results were compared with those derived from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED) satellite. The zonal mean temperatures at similar latitudes show good agreement. The observations also reveal that the AO dominates the seasonal oscillations in both the stratosphere and the mesosphere at middle and high latitudes, with the amplitudes increasing poleward. The SAO oscillations are weaker at all six sites. The oscillations in the upper mesosphere are usually stronger than those in the upper stratosphere with a local minimum near 50–65 km. The upper mesospheric signals are clearly out of phase with upper stratospheric signals. Some differences between lidar and SABER results were found in both the stratosphere and mesosphere. These could be due to: the difference in data sampling between ground‐based and space‐based instruments, the length of data set, the tidal aliasing owing to the temperature AO and SAO since lidar data are nighttime only, and lidar temperature analysis algorithms. The seasonal oscillations of tidal amplitudes derived from SABER observations suggests that the tidal aliasing of the lidar temperature AO and SAO in the upper mesosphere may over‐ or under‐estimate the real temperature oscillations, depending on the tidal phases. In addition, the possibly unrealistic seasonal oscillations embedded in the climatological models (e.g., MSIS or CIRA) at the reference point for lidar temperature analysis may also affect the lidar results in the top part of the profiles (usually in the upper mesosphere).</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2008JD011654</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Aliasing ; Amplitudes ; Atmospheric and Oceanic Physics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Latitude ; Lidar ; Marine ; Mesosphere ; middle atmosphere temperature ; Mountains ; Oscillations ; Physics ; Rayleigh lidar ; seasonal oscillation ; Stratosphere</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2009-10, Vol.114 (D20), p.n/a</ispartof><rights>Copyright 2009 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5791-ff87c8cfadcce07ec4d0cb10cab9671b45660486dee090b2d56eceabceaff5f33</citedby><cites>FETCH-LOGICAL-c5791-ff87c8cfadcce07ec4d0cb10cab9671b45660486dee090b2d56eceabceaff5f33</cites><orcidid>0000-0003-1815-0667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2008JD011654$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2008JD011654$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22136920$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00406337$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dou, Xiankang</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Xu, Jiyao</creatorcontrib><creatorcontrib>Liu, Han-Li</creatorcontrib><creatorcontrib>Xue, Xianghui</creatorcontrib><creatorcontrib>Wang, Shui</creatorcontrib><creatorcontrib>Leblanc, Thierry</creatorcontrib><creatorcontrib>McDermid, I. Stuart</creatorcontrib><creatorcontrib>Hauchecorne, Alain</creatorcontrib><creatorcontrib>Keckhut, Philippe</creatorcontrib><creatorcontrib>Bencherif, Hassan</creatorcontrib><creatorcontrib>Heinselman, Craig</creatorcontrib><creatorcontrib>Steinbrecht, Wolfgang</creatorcontrib><creatorcontrib>Mlynczak, M. G.</creatorcontrib><creatorcontrib>Russell III, J. M.</creatorcontrib><title>Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>The long‐term temperature data sets obtained by Rayleigh lidars at six different locations from low to high latitudes within the Network for the Detection of Atmospheric Composition Change (NDACC) were used to derive the annual oscillations (AO) and semiannual oscillations (SAO) of middle atmosphere temperature: Reunion Island (21.8°S); Mauna Loa Observatory, Hawaii (19.5°N); Table Mountain Facility, California (34.4°N); Observatoire de Haute Provence, France (43.9°N); Hohenpeissenberg, Germany (47.8°N); Sondre Stromfjord, Greenland (67.0°N). The results were compared with those derived from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED) satellite. The zonal mean temperatures at similar latitudes show good agreement. The observations also reveal that the AO dominates the seasonal oscillations in both the stratosphere and the mesosphere at middle and high latitudes, with the amplitudes increasing poleward. The SAO oscillations are weaker at all six sites. The oscillations in the upper mesosphere are usually stronger than those in the upper stratosphere with a local minimum near 50–65 km. The upper mesospheric signals are clearly out of phase with upper stratospheric signals. Some differences between lidar and SABER results were found in both the stratosphere and mesosphere. These could be due to: the difference in data sampling between ground‐based and space‐based instruments, the length of data set, the tidal aliasing owing to the temperature AO and SAO since lidar data are nighttime only, and lidar temperature analysis algorithms. The seasonal oscillations of tidal amplitudes derived from SABER observations suggests that the tidal aliasing of the lidar temperature AO and SAO in the upper mesosphere may over‐ or under‐estimate the real temperature oscillations, depending on the tidal phases. In addition, the possibly unrealistic seasonal oscillations embedded in the climatological models (e.g., MSIS or CIRA) at the reference point for lidar temperature analysis may also affect the lidar results in the top part of the profiles (usually in the upper mesosphere).</description><subject>Aliasing</subject><subject>Amplitudes</subject><subject>Atmospheric and Oceanic Physics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Latitude</subject><subject>Lidar</subject><subject>Marine</subject><subject>Mesosphere</subject><subject>middle atmosphere temperature</subject><subject>Mountains</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Rayleigh lidar</subject><subject>seasonal oscillation</subject><subject>Stratosphere</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkl1v0zAUhiMEEtXYHT_AN3xJhNmOP5LLbi3tpvKhbmyXluOcUENSFzvd6B_gd-OQquKqs2TZsp73PcevTpK8JPgDwbQ4oxjnVxNMiODsSTKihIuUUkyfJiNMWJ5iSuXz5DSEHzguxgXDZJT8uQYd3Fo3yAVjm0Z31q0DcjVqbVU1gHTXurBZgQfUQbsBr7ttvLsygL-HCpU7tNS7Buz3FWpspX1Ael2hbgXWI-PajfY29JYPtluhm8tP08nZ9fh8utxbDAVfJM9q3QQ43Z8nybeP05uLebr4Mru8GC9Sw2VB0rrOpclNrStjAEswrMKmJNjoshCSlPFXArNcVAC4wCWtuAADuoy7rnmdZSfJu8F3pRu18bbVfqectmo-Xqj-LSaDRZbJexLZNwO78e7XFkKnWhsMxIzW4LZBSc44L3LKIvn6KJkJRiXj9FGQkoxxjPs-3x4FiZSSUIIJfhyNxf_5ioi-H1DjXQge6kMEBKt-iNT_QxTxV3tnHYxuaq_XxoaDpncVBe07yAbuwTawO-qprmbLCeGM9fGmg8qGDn4fVNr_VEJmkqu7zzNFv84ny1t-q-6yvw235OA</recordid><startdate>20091017</startdate><enddate>20091017</enddate><creator>Dou, Xiankang</creator><creator>Li, Tao</creator><creator>Xu, Jiyao</creator><creator>Liu, Han-Li</creator><creator>Xue, Xianghui</creator><creator>Wang, Shui</creator><creator>Leblanc, Thierry</creator><creator>McDermid, I. Stuart</creator><creator>Hauchecorne, Alain</creator><creator>Keckhut, Philippe</creator><creator>Bencherif, Hassan</creator><creator>Heinselman, Craig</creator><creator>Steinbrecht, Wolfgang</creator><creator>Mlynczak, M. G.</creator><creator>Russell III, J. M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7SM</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1815-0667</orcidid></search><sort><creationdate>20091017</creationdate><title>Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations</title><author>Dou, Xiankang ; Li, Tao ; Xu, Jiyao ; Liu, Han-Li ; Xue, Xianghui ; Wang, Shui ; Leblanc, Thierry ; McDermid, I. Stuart ; Hauchecorne, Alain ; Keckhut, Philippe ; Bencherif, Hassan ; Heinselman, Craig ; Steinbrecht, Wolfgang ; Mlynczak, M. G. ; Russell III, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5791-ff87c8cfadcce07ec4d0cb10cab9671b45660486dee090b2d56eceabceaff5f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aliasing</topic><topic>Amplitudes</topic><topic>Atmospheric and Oceanic Physics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Latitude</topic><topic>Lidar</topic><topic>Marine</topic><topic>Mesosphere</topic><topic>middle atmosphere temperature</topic><topic>Mountains</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Rayleigh lidar</topic><topic>seasonal oscillation</topic><topic>Stratosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Xiankang</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Xu, Jiyao</creatorcontrib><creatorcontrib>Liu, Han-Li</creatorcontrib><creatorcontrib>Xue, Xianghui</creatorcontrib><creatorcontrib>Wang, Shui</creatorcontrib><creatorcontrib>Leblanc, Thierry</creatorcontrib><creatorcontrib>McDermid, I. Stuart</creatorcontrib><creatorcontrib>Hauchecorne, Alain</creatorcontrib><creatorcontrib>Keckhut, Philippe</creatorcontrib><creatorcontrib>Bencherif, Hassan</creatorcontrib><creatorcontrib>Heinselman, Craig</creatorcontrib><creatorcontrib>Steinbrecht, Wolfgang</creatorcontrib><creatorcontrib>Mlynczak, M. G.</creatorcontrib><creatorcontrib>Russell III, J. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earthquake Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dou, Xiankang</au><au>Li, Tao</au><au>Xu, Jiyao</au><au>Liu, Han-Li</au><au>Xue, Xianghui</au><au>Wang, Shui</au><au>Leblanc, Thierry</au><au>McDermid, I. Stuart</au><au>Hauchecorne, Alain</au><au>Keckhut, Philippe</au><au>Bencherif, Hassan</au><au>Heinselman, Craig</au><au>Steinbrecht, Wolfgang</au><au>Mlynczak, M. G.</au><au>Russell III, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2009-10-17</date><risdate>2009</risdate><volume>114</volume><issue>D20</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>The long‐term temperature data sets obtained by Rayleigh lidars at six different locations from low to high latitudes within the Network for the Detection of Atmospheric Composition Change (NDACC) were used to derive the annual oscillations (AO) and semiannual oscillations (SAO) of middle atmosphere temperature: Reunion Island (21.8°S); Mauna Loa Observatory, Hawaii (19.5°N); Table Mountain Facility, California (34.4°N); Observatoire de Haute Provence, France (43.9°N); Hohenpeissenberg, Germany (47.8°N); Sondre Stromfjord, Greenland (67.0°N). The results were compared with those derived from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere‐Ionosphere‐Mesosphere Energetics and Dynamics (TIMED) satellite. The zonal mean temperatures at similar latitudes show good agreement. The observations also reveal that the AO dominates the seasonal oscillations in both the stratosphere and the mesosphere at middle and high latitudes, with the amplitudes increasing poleward. The SAO oscillations are weaker at all six sites. The oscillations in the upper mesosphere are usually stronger than those in the upper stratosphere with a local minimum near 50–65 km. The upper mesospheric signals are clearly out of phase with upper stratospheric signals. Some differences between lidar and SABER results were found in both the stratosphere and mesosphere. These could be due to: the difference in data sampling between ground‐based and space‐based instruments, the length of data set, the tidal aliasing owing to the temperature AO and SAO since lidar data are nighttime only, and lidar temperature analysis algorithms. The seasonal oscillations of tidal amplitudes derived from SABER observations suggests that the tidal aliasing of the lidar temperature AO and SAO in the upper mesosphere may over‐ or under‐estimate the real temperature oscillations, depending on the tidal phases. In addition, the possibly unrealistic seasonal oscillations embedded in the climatological models (e.g., MSIS or CIRA) at the reference point for lidar temperature analysis may also affect the lidar results in the top part of the profiles (usually in the upper mesosphere).</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2008JD011654</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1815-0667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. B. Solid Earth, 2009-10, Vol.114 (D20), p.n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_hal_primary_oai_HAL_hal_00406337v1
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Wiley Online Library AGU 2017; Alma/SFX Local Collection
subjects Aliasing
Amplitudes
Atmospheric and Oceanic Physics
Earth sciences
Earth, ocean, space
Exact sciences and technology
Latitude
Lidar
Marine
Mesosphere
middle atmosphere temperature
Mountains
Oscillations
Physics
Rayleigh lidar
seasonal oscillation
Stratosphere
title Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20oscillations%20of%20middle%20atmosphere%20temperature%20observed%20by%20Rayleigh%20lidars%20and%20their%20comparisons%20with%20TIMED/SABER%20observations&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Dou,%20Xiankang&rft.date=2009-10-17&rft.volume=114&rft.issue=D20&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2008JD011654&rft_dat=%3Cproquest_hal_p%3E754559824%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642213456&rft_id=info:pmid/&rfr_iscdi=true