Free Boolean algebras over unions of two well orderings

Given a partially ordered set P there exists the most general Boolean algebra F ˆ ( P ) which contains P as a generating set, called the free Boolean algebra over P. We study free Boolean algebras over posets of the form P = P 0 ∪ P 1 , where P 0 , P 1 are well orderings. We call them nearly ordinal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Topology and its applications 2009-04, Vol.156 (7), p.1177-1185
Hauptverfasser: Bonnet, Robert, Faouzi, Latifa, Kubiś, Wiesław
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1185
container_issue 7
container_start_page 1177
container_title Topology and its applications
container_volume 156
creator Bonnet, Robert
Faouzi, Latifa
Kubiś, Wiesław
description Given a partially ordered set P there exists the most general Boolean algebra F ˆ ( P ) which contains P as a generating set, called the free Boolean algebra over P. We study free Boolean algebras over posets of the form P = P 0 ∪ P 1 , where P 0 , P 1 are well orderings. We call them nearly ordinal algebras. Answering a question of Maurice Pouzet, we show that for every uncountable cardinal κ there are 2 κ pairwise non-isomorphic nearly ordinal algebras of cardinality κ. Topologically, free Boolean algebras over posets correspond to compact 0-dimensional distributive lattices. In this context, we classify all closed sublattices of the product ( ω 1 + 1 ) × ( ω 1 + 1 ) , showing that there are only ℵ 1 many types. In contrast with the last result, we show that there are 2 ℵ 1 topological types of closed subsets of the Tikhonov plank ( ω 1 + 1 ) × ( ω + 1 ) .
doi_str_mv 10.1016/j.topol.2008.12.012
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00393948v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166864108003921</els_id><sourcerecordid>oai_HAL_hal_00393948v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-569f8bc9558b6f9d214bee9e2732a0024109219ed8ddd66dc3c0d9e4e401d5b73</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1iyMiTc2fnywFAq2iJVYoHZcuxLcRXiyg6t-PekFDEy3avT-5x0D2O3CBkClvfbbPA732UcoM6QZ4D8jE2wrmQqOFTnbDK2yrQuc7xkVzFuAQBlxSesWgSi5NH7jnSf6G5DTdAx8XsKyWfvfD_mNhkOPjlQ1yU-WAqu38RrdtHqLtLN75yyt8XT63yVrl-Wz_PZOjVC8CEtStnWjZFFUTdlKy3HvCGSxCvBNQDPESRHSba21palNcKAlZRTDmiLphJTdne6-647tQvuQ4cv5bVTq9laHXcAQgqZ13scu-LUNcHHGKj9AxDU0ZPaqh9P6uhJIVejp5F6OFE0vrF3FFQ0jnpD1gUyg7Le_ct_A7P2cRc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free Boolean algebras over unions of two well orderings</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bonnet, Robert ; Faouzi, Latifa ; Kubiś, Wiesław</creator><creatorcontrib>Bonnet, Robert ; Faouzi, Latifa ; Kubiś, Wiesław</creatorcontrib><description>Given a partially ordered set P there exists the most general Boolean algebra F ˆ ( P ) which contains P as a generating set, called the free Boolean algebra over P. We study free Boolean algebras over posets of the form P = P 0 ∪ P 1 , where P 0 , P 1 are well orderings. We call them nearly ordinal algebras. Answering a question of Maurice Pouzet, we show that for every uncountable cardinal κ there are 2 κ pairwise non-isomorphic nearly ordinal algebras of cardinality κ. Topologically, free Boolean algebras over posets correspond to compact 0-dimensional distributive lattices. In this context, we classify all closed sublattices of the product ( ω 1 + 1 ) × ( ω 1 + 1 ) , showing that there are only ℵ 1 many types. In contrast with the last result, we show that there are 2 ℵ 1 topological types of closed subsets of the Tikhonov plank ( ω 1 + 1 ) × ( ω + 1 ) .</description><identifier>ISSN: 0166-8641</identifier><identifier>EISSN: 1879-3207</identifier><identifier>DOI: 10.1016/j.topol.2008.12.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Compact distributive lattices ; Computer Science ; Discrete Mathematics ; Poset algebras ; Superatomic Boolean algebras ; Well quasi orderings</subject><ispartof>Topology and its applications, 2009-04, Vol.156 (7), p.1177-1185</ispartof><rights>2008 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-569f8bc9558b6f9d214bee9e2732a0024109219ed8ddd66dc3c0d9e4e401d5b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.topol.2008.12.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00393948$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonnet, Robert</creatorcontrib><creatorcontrib>Faouzi, Latifa</creatorcontrib><creatorcontrib>Kubiś, Wiesław</creatorcontrib><title>Free Boolean algebras over unions of two well orderings</title><title>Topology and its applications</title><description>Given a partially ordered set P there exists the most general Boolean algebra F ˆ ( P ) which contains P as a generating set, called the free Boolean algebra over P. We study free Boolean algebras over posets of the form P = P 0 ∪ P 1 , where P 0 , P 1 are well orderings. We call them nearly ordinal algebras. Answering a question of Maurice Pouzet, we show that for every uncountable cardinal κ there are 2 κ pairwise non-isomorphic nearly ordinal algebras of cardinality κ. Topologically, free Boolean algebras over posets correspond to compact 0-dimensional distributive lattices. In this context, we classify all closed sublattices of the product ( ω 1 + 1 ) × ( ω 1 + 1 ) , showing that there are only ℵ 1 many types. In contrast with the last result, we show that there are 2 ℵ 1 topological types of closed subsets of the Tikhonov plank ( ω 1 + 1 ) × ( ω + 1 ) .</description><subject>Compact distributive lattices</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Poset algebras</subject><subject>Superatomic Boolean algebras</subject><subject>Well quasi orderings</subject><issn>0166-8641</issn><issn>1879-3207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1iyMiTc2fnywFAq2iJVYoHZcuxLcRXiyg6t-PekFDEy3avT-5x0D2O3CBkClvfbbPA732UcoM6QZ4D8jE2wrmQqOFTnbDK2yrQuc7xkVzFuAQBlxSesWgSi5NH7jnSf6G5DTdAx8XsKyWfvfD_mNhkOPjlQ1yU-WAqu38RrdtHqLtLN75yyt8XT63yVrl-Wz_PZOjVC8CEtStnWjZFFUTdlKy3HvCGSxCvBNQDPESRHSba21palNcKAlZRTDmiLphJTdne6-647tQvuQ4cv5bVTq9laHXcAQgqZ13scu-LUNcHHGKj9AxDU0ZPaqh9P6uhJIVejp5F6OFE0vrF3FFQ0jnpD1gUyg7Le_ct_A7P2cRc</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Bonnet, Robert</creator><creator>Faouzi, Latifa</creator><creator>Kubiś, Wiesław</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20090401</creationdate><title>Free Boolean algebras over unions of two well orderings</title><author>Bonnet, Robert ; Faouzi, Latifa ; Kubiś, Wiesław</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-569f8bc9558b6f9d214bee9e2732a0024109219ed8ddd66dc3c0d9e4e401d5b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Compact distributive lattices</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Poset algebras</topic><topic>Superatomic Boolean algebras</topic><topic>Well quasi orderings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnet, Robert</creatorcontrib><creatorcontrib>Faouzi, Latifa</creatorcontrib><creatorcontrib>Kubiś, Wiesław</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Topology and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnet, Robert</au><au>Faouzi, Latifa</au><au>Kubiś, Wiesław</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free Boolean algebras over unions of two well orderings</atitle><jtitle>Topology and its applications</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>156</volume><issue>7</issue><spage>1177</spage><epage>1185</epage><pages>1177-1185</pages><issn>0166-8641</issn><eissn>1879-3207</eissn><abstract>Given a partially ordered set P there exists the most general Boolean algebra F ˆ ( P ) which contains P as a generating set, called the free Boolean algebra over P. We study free Boolean algebras over posets of the form P = P 0 ∪ P 1 , where P 0 , P 1 are well orderings. We call them nearly ordinal algebras. Answering a question of Maurice Pouzet, we show that for every uncountable cardinal κ there are 2 κ pairwise non-isomorphic nearly ordinal algebras of cardinality κ. Topologically, free Boolean algebras over posets correspond to compact 0-dimensional distributive lattices. In this context, we classify all closed sublattices of the product ( ω 1 + 1 ) × ( ω 1 + 1 ) , showing that there are only ℵ 1 many types. In contrast with the last result, we show that there are 2 ℵ 1 topological types of closed subsets of the Tikhonov plank ( ω 1 + 1 ) × ( ω + 1 ) .</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.topol.2008.12.012</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-8641
ispartof Topology and its applications, 2009-04, Vol.156 (7), p.1177-1185
issn 0166-8641
1879-3207
language eng
recordid cdi_hal_primary_oai_HAL_hal_00393948v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Compact distributive lattices
Computer Science
Discrete Mathematics
Poset algebras
Superatomic Boolean algebras
Well quasi orderings
title Free Boolean algebras over unions of two well orderings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20Boolean%20algebras%20over%20unions%20of%20two%20well%20orderings&rft.jtitle=Topology%20and%20its%20applications&rft.au=Bonnet,%20Robert&rft.date=2009-04-01&rft.volume=156&rft.issue=7&rft.spage=1177&rft.epage=1185&rft.pages=1177-1185&rft.issn=0166-8641&rft.eissn=1879-3207&rft_id=info:doi/10.1016/j.topol.2008.12.012&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00393948v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166864108003921&rfr_iscdi=true