NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL
In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the disc...
Gespeichert in:
Veröffentlicht in: | ESAIM. Mathematical modelling and numerical analysis 2011-07, Vol.45 (4), p.697-738 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 738 |
---|---|
container_issue | 4 |
container_start_page | 697 |
container_title | ESAIM. Mathematical modelling and numerical analysis |
container_volume | 45 |
creator | BOYER, Franck MINJEAUD, Sebastian |
description | In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by various numerical examples showing that the new semi-implicit discretization that we propose seems to be a good compromise between robustness and accuracy. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1051/m2an/2010072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00390065v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>864409093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-f6c65762b751041bff7fbf58d2b75e694c28b48805b5c12f691b52636cf90acd3</originalsourceid><addsrcrecordid>eNpdkVtLw0AQhRdRsF7e_AFBEBGMnb0mi08hpqaQNlIr-LZs1ixG0qRmW8F_b0JLH3waOHxzDnMGoSsMDxg4Hq-IbsYEMEBAjtAIEwk-DRk-RiMIBPN5SN9P0ZlzXwA9xfgIPc7fZsliGkeZ9xqnySx59Sb5wou8ZbpIEi_OZy_5PJkvvThK5346zbJptHjyZvlTkl2gE6trV17u5zl6myTLOPWz_Hlw9A2VYuNbYQQPBCkC3mfiwtrAFpaHH4NSCskMCQsWhsALbjCxQuKCE0GFsRK0-aDn6G7n-6lrte6qle5-VasrlUaZGjQAKgEE_yE9e7tj1137vS3dRq0qZ8q61k3Zbp0KBWMgQdKevP5HfrXbrukPUaEUjApMBuh-B5muda4r7SEfgxo6V0Pnat95j9_sPbUzuradbkzlDjuE0QBw_4U_oH94ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896436123</pqid></control><display><type>article</type><title>NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>NUMDAM</source><creator>BOYER, Franck ; MINJEAUD, Sebastian</creator><creatorcontrib>BOYER, Franck ; MINJEAUD, Sebastian</creatorcontrib><description>In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by various numerical examples showing that the new semi-implicit discretization that we propose seems to be a good compromise between robustness and accuracy. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2010072</identifier><identifier>CODEN: RMMAEV</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Boundary conditions ; Convergence ; Discretization ; Energy ; Exact sciences and technology ; Finite element analysis ; Free energy ; Galerkin methods ; Interfaces ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical Analysis ; Robustness ; Sciences and techniques of general use ; Theorems</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2011-07, Vol.45 (4), p.697-738</ispartof><rights>2015 INIST-CNRS</rights><rights>EDP Sciences, SMAI, 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-f6c65762b751041bff7fbf58d2b75e694c28b48805b5c12f691b52636cf90acd3</citedby><cites>FETCH-LOGICAL-c396t-f6c65762b751041bff7fbf58d2b75e694c28b48805b5c12f691b52636cf90acd3</cites><orcidid>0000-0002-9286-9373 ; 0000-0001-5976-4847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24370158$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00390065$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BOYER, Franck</creatorcontrib><creatorcontrib>MINJEAUD, Sebastian</creatorcontrib><title>NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by various numerical examples showing that the new semi-implicit discretization that we propose seems to be a good compromise between robustness and accuracy. [PUBLICATION ABSTRACT]</description><subject>Boundary conditions</subject><subject>Convergence</subject><subject>Discretization</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Free energy</subject><subject>Galerkin methods</subject><subject>Interfaces</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><subject>Robustness</subject><subject>Sciences and techniques of general use</subject><subject>Theorems</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkVtLw0AQhRdRsF7e_AFBEBGMnb0mi08hpqaQNlIr-LZs1ixG0qRmW8F_b0JLH3waOHxzDnMGoSsMDxg4Hq-IbsYEMEBAjtAIEwk-DRk-RiMIBPN5SN9P0ZlzXwA9xfgIPc7fZsliGkeZ9xqnySx59Sb5wou8ZbpIEi_OZy_5PJkvvThK5346zbJptHjyZvlTkl2gE6trV17u5zl6myTLOPWz_Hlw9A2VYuNbYQQPBCkC3mfiwtrAFpaHH4NSCskMCQsWhsALbjCxQuKCE0GFsRK0-aDn6G7n-6lrte6qle5-VasrlUaZGjQAKgEE_yE9e7tj1137vS3dRq0qZ8q61k3Zbp0KBWMgQdKevP5HfrXbrukPUaEUjApMBuh-B5muda4r7SEfgxo6V0Pnat95j9_sPbUzuradbkzlDjuE0QBw_4U_oH94ag</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>BOYER, Franck</creator><creator>MINJEAUD, Sebastian</creator><general>EDP Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9286-9373</orcidid><orcidid>https://orcid.org/0000-0001-5976-4847</orcidid></search><sort><creationdate>20110701</creationdate><title>NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL</title><author>BOYER, Franck ; MINJEAUD, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-f6c65762b751041bff7fbf58d2b75e694c28b48805b5c12f691b52636cf90acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundary conditions</topic><topic>Convergence</topic><topic>Discretization</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Free energy</topic><topic>Galerkin methods</topic><topic>Interfaces</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><topic>Robustness</topic><topic>Sciences and techniques of general use</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOYER, Franck</creatorcontrib><creatorcontrib>MINJEAUD, Sebastian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOYER, Franck</au><au>MINJEAUD, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>45</volume><issue>4</issue><spage>697</spage><epage>738</epage><pages>697-738</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><coden>RMMAEV</coden><abstract>In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by various numerical examples showing that the new semi-implicit discretization that we propose seems to be a good compromise between robustness and accuracy. [PUBLICATION ABSTRACT]</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2010072</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0002-9286-9373</orcidid><orcidid>https://orcid.org/0000-0001-5976-4847</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0764-583X |
ispartof | ESAIM. Mathematical modelling and numerical analysis, 2011-07, Vol.45 (4), p.697-738 |
issn | 0764-583X 1290-3841 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00390065v2 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; NUMDAM |
subjects | Boundary conditions Convergence Discretization Energy Exact sciences and technology Finite element analysis Free energy Galerkin methods Interfaces Mathematical analysis Mathematical models Mathematics Numerical Analysis Robustness Sciences and techniques of general use Theorems |
title | NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20SCHEMES%20FOR%20A%20THREE%20COMPONENT%20CAHN-HILLIARD%20MODEL&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=BOYER,%20Franck&rft.date=2011-07-01&rft.volume=45&rft.issue=4&rft.spage=697&rft.epage=738&rft.pages=697-738&rft.issn=0764-583X&rft.eissn=1290-3841&rft.coden=RMMAEV&rft_id=info:doi/10.1051/m2an/2010072&rft_dat=%3Cproquest_hal_p%3E864409093%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896436123&rft_id=info:pmid/&rfr_iscdi=true |