NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL

In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the disc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2011-07, Vol.45 (4), p.697-738
Hauptverfasser: BOYER, Franck, MINJEAUD, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 4
container_start_page 697
container_title ESAIM. Mathematical modelling and numerical analysis
container_volume 45
creator BOYER, Franck
MINJEAUD, Sebastian
description In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by various numerical examples showing that the new semi-implicit discretization that we propose seems to be a good compromise between robustness and accuracy. [PUBLICATION ABSTRACT]
doi_str_mv 10.1051/m2an/2010072
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00390065v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>864409093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-f6c65762b751041bff7fbf58d2b75e694c28b48805b5c12f691b52636cf90acd3</originalsourceid><addsrcrecordid>eNpdkVtLw0AQhRdRsF7e_AFBEBGMnb0mi08hpqaQNlIr-LZs1ixG0qRmW8F_b0JLH3waOHxzDnMGoSsMDxg4Hq-IbsYEMEBAjtAIEwk-DRk-RiMIBPN5SN9P0ZlzXwA9xfgIPc7fZsliGkeZ9xqnySx59Sb5wou8ZbpIEi_OZy_5PJkvvThK5346zbJptHjyZvlTkl2gE6trV17u5zl6myTLOPWz_Hlw9A2VYuNbYQQPBCkC3mfiwtrAFpaHH4NSCskMCQsWhsALbjCxQuKCE0GFsRK0-aDn6G7n-6lrte6qle5-VasrlUaZGjQAKgEE_yE9e7tj1137vS3dRq0qZ8q61k3Zbp0KBWMgQdKevP5HfrXbrukPUaEUjApMBuh-B5muda4r7SEfgxo6V0Pnat95j9_sPbUzuradbkzlDjuE0QBw_4U_oH94ag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896436123</pqid></control><display><type>article</type><title>NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>NUMDAM</source><creator>BOYER, Franck ; MINJEAUD, Sebastian</creator><creatorcontrib>BOYER, Franck ; MINJEAUD, Sebastian</creatorcontrib><description>In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by various numerical examples showing that the new semi-implicit discretization that we propose seems to be a good compromise between robustness and accuracy. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2010072</identifier><identifier>CODEN: RMMAEV</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Boundary conditions ; Convergence ; Discretization ; Energy ; Exact sciences and technology ; Finite element analysis ; Free energy ; Galerkin methods ; Interfaces ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical Analysis ; Robustness ; Sciences and techniques of general use ; Theorems</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2011-07, Vol.45 (4), p.697-738</ispartof><rights>2015 INIST-CNRS</rights><rights>EDP Sciences, SMAI, 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-f6c65762b751041bff7fbf58d2b75e694c28b48805b5c12f691b52636cf90acd3</citedby><cites>FETCH-LOGICAL-c396t-f6c65762b751041bff7fbf58d2b75e694c28b48805b5c12f691b52636cf90acd3</cites><orcidid>0000-0002-9286-9373 ; 0000-0001-5976-4847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24370158$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00390065$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BOYER, Franck</creatorcontrib><creatorcontrib>MINJEAUD, Sebastian</creatorcontrib><title>NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by various numerical examples showing that the new semi-implicit discretization that we propose seems to be a good compromise between robustness and accuracy. [PUBLICATION ABSTRACT]</description><subject>Boundary conditions</subject><subject>Convergence</subject><subject>Discretization</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Free energy</subject><subject>Galerkin methods</subject><subject>Interfaces</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><subject>Robustness</subject><subject>Sciences and techniques of general use</subject><subject>Theorems</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkVtLw0AQhRdRsF7e_AFBEBGMnb0mi08hpqaQNlIr-LZs1ixG0qRmW8F_b0JLH3waOHxzDnMGoSsMDxg4Hq-IbsYEMEBAjtAIEwk-DRk-RiMIBPN5SN9P0ZlzXwA9xfgIPc7fZsliGkeZ9xqnySx59Sb5wou8ZbpIEi_OZy_5PJkvvThK5346zbJptHjyZvlTkl2gE6trV17u5zl6myTLOPWz_Hlw9A2VYuNbYQQPBCkC3mfiwtrAFpaHH4NSCskMCQsWhsALbjCxQuKCE0GFsRK0-aDn6G7n-6lrte6qle5-VasrlUaZGjQAKgEE_yE9e7tj1137vS3dRq0qZ8q61k3Zbp0KBWMgQdKevP5HfrXbrukPUaEUjApMBuh-B5muda4r7SEfgxo6V0Pnat95j9_sPbUzuradbkzlDjuE0QBw_4U_oH94ag</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>BOYER, Franck</creator><creator>MINJEAUD, Sebastian</creator><general>EDP Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9286-9373</orcidid><orcidid>https://orcid.org/0000-0001-5976-4847</orcidid></search><sort><creationdate>20110701</creationdate><title>NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL</title><author>BOYER, Franck ; MINJEAUD, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-f6c65762b751041bff7fbf58d2b75e694c28b48805b5c12f691b52636cf90acd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundary conditions</topic><topic>Convergence</topic><topic>Discretization</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Free energy</topic><topic>Galerkin methods</topic><topic>Interfaces</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><topic>Robustness</topic><topic>Sciences and techniques of general use</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOYER, Franck</creatorcontrib><creatorcontrib>MINJEAUD, Sebastian</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOYER, Franck</au><au>MINJEAUD, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>45</volume><issue>4</issue><spage>697</spage><epage>738</epage><pages>697-738</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><coden>RMMAEV</coden><abstract>In this article, we investigate numerical schemes for solving a three component Cahn-Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite element method. Concerning the time discretization, the main difficulty is to write a scheme ensuring, at the discrete level, the decrease of the free energy and thus the stability of the method. We study three different schemes and prove existence and convergence theorems. Theoretical results are illustrated by various numerical examples showing that the new semi-implicit discretization that we propose seems to be a good compromise between robustness and accuracy. [PUBLICATION ABSTRACT]</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2010072</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0002-9286-9373</orcidid><orcidid>https://orcid.org/0000-0001-5976-4847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0764-583X
ispartof ESAIM. Mathematical modelling and numerical analysis, 2011-07, Vol.45 (4), p.697-738
issn 0764-583X
1290-3841
language eng
recordid cdi_hal_primary_oai_HAL_hal_00390065v2
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; NUMDAM
subjects Boundary conditions
Convergence
Discretization
Energy
Exact sciences and technology
Finite element analysis
Free energy
Galerkin methods
Interfaces
Mathematical analysis
Mathematical models
Mathematics
Numerical Analysis
Robustness
Sciences and techniques of general use
Theorems
title NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20SCHEMES%20FOR%20A%20THREE%20COMPONENT%20CAHN-HILLIARD%20MODEL&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=BOYER,%20Franck&rft.date=2011-07-01&rft.volume=45&rft.issue=4&rft.spage=697&rft.epage=738&rft.pages=697-738&rft.issn=0764-583X&rft.eissn=1290-3841&rft.coden=RMMAEV&rft_id=info:doi/10.1051/m2an/2010072&rft_dat=%3Cproquest_hal_p%3E864409093%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896436123&rft_id=info:pmid/&rfr_iscdi=true