Sharp Large Deviations for the Fractional Ornstein–Uhlenbeck Process
We investigate the sharp large deviation properties of the energy and the maximum likelihood estimator for the Ornstein-Uhlenbeck process driven by a fractional Brownian motion with Hurst index greater than one half. [PUBLICATION ABSTRACT]
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 2011-01, Vol.55 (4), p.575-610 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 610 |
---|---|
container_issue | 4 |
container_start_page | 575 |
container_title | Theory of probability and its applications |
container_volume | 55 |
creator | Bercu, B. Coutin, L. Savy, N. |
description | We investigate the sharp large deviation properties of the energy and the maximum likelihood estimator for the Ornstein-Uhlenbeck process driven by a fractional Brownian motion with Hurst index greater than one half. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/S0040585X97985108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00386239v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3009048991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-6e868454584132930c192433cdbeec43d2825bec7f0af45e4497cab22c9c8fd43</originalsourceid><addsrcrecordid>eNplkM1KAzEUhYMoWKsP4C7gysXozd9MsizVtsJAhVpwF9I040wdJzWZFtz5Dr6hT-IMFTeuLpzzceB-CF0SuCGEZbcLAA5CimeVKSkIyCM0IKBEklGijtGgr5O-P0VnMW4AIKVEDNBkUZqwxbkJLw7fuX1l2so3ERc-4LZ0eBKM7RNT43loYuuq5vvza1nWrlk5-4ofg7cuxnN0Upg6uovfO0TLyf3TeJbk8-nDeJQnlqe8TVInU8kFF5ITRhUDSxTljNn1yjnL2ZpKKrrdrABTcOE4V5k1K0qtsrJYczZE14fd0tR6G6o3Ez60N5WejXLdZwBMppSpPenYqwO7Df5952KrN34Xuk-i7ozRjHOWyo4iB8oGH2Nwxd8sAd2r1f_Ush8Cimsb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372744368</pqid></control><display><type>article</type><title>Sharp Large Deviations for the Fractional Ornstein–Uhlenbeck Process</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Bercu, B. ; Coutin, L. ; Savy, N.</creator><creatorcontrib>Bercu, B. ; Coutin, L. ; Savy, N.</creatorcontrib><description>We investigate the sharp large deviation properties of the energy and the maximum likelihood estimator for the Ornstein-Uhlenbeck process driven by a fractional Brownian motion with Hurst index greater than one half. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0040-585X</identifier><identifier>ISSN: 1095-7219</identifier><identifier>EISSN: 1095-7219</identifier><identifier>DOI: 10.1137/S0040585X97985108</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Brownian motion ; Investigations ; Mathematics ; Probability ; Random variables</subject><ispartof>Theory of probability and its applications, 2011-01, Vol.55 (4), p.575-610</ispartof><rights>Copyright © 2011 Society for Industrial and Applied Mathematics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-6e868454584132930c192433cdbeec43d2825bec7f0af45e4497cab22c9c8fd43</citedby><cites>FETCH-LOGICAL-c464t-6e868454584132930c192433cdbeec43d2825bec7f0af45e4497cab22c9c8fd43</cites><orcidid>0000-0001-9839-9598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3172,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00386239$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bercu, B.</creatorcontrib><creatorcontrib>Coutin, L.</creatorcontrib><creatorcontrib>Savy, N.</creatorcontrib><title>Sharp Large Deviations for the Fractional Ornstein–Uhlenbeck Process</title><title>Theory of probability and its applications</title><description>We investigate the sharp large deviation properties of the energy and the maximum likelihood estimator for the Ornstein-Uhlenbeck process driven by a fractional Brownian motion with Hurst index greater than one half. [PUBLICATION ABSTRACT]</description><subject>Brownian motion</subject><subject>Investigations</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Random variables</subject><issn>0040-585X</issn><issn>1095-7219</issn><issn>1095-7219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkM1KAzEUhYMoWKsP4C7gysXozd9MsizVtsJAhVpwF9I040wdJzWZFtz5Dr6hT-IMFTeuLpzzceB-CF0SuCGEZbcLAA5CimeVKSkIyCM0IKBEklGijtGgr5O-P0VnMW4AIKVEDNBkUZqwxbkJLw7fuX1l2so3ERc-4LZ0eBKM7RNT43loYuuq5vvza1nWrlk5-4ofg7cuxnN0Upg6uovfO0TLyf3TeJbk8-nDeJQnlqe8TVInU8kFF5ITRhUDSxTljNn1yjnL2ZpKKrrdrABTcOE4V5k1K0qtsrJYczZE14fd0tR6G6o3Ez60N5WejXLdZwBMppSpPenYqwO7Df5952KrN34Xuk-i7ozRjHOWyo4iB8oGH2Nwxd8sAd2r1f_Ush8Cimsb</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Bercu, B.</creator><creator>Coutin, L.</creator><creator>Savy, N.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9839-9598</orcidid></search><sort><creationdate>20110101</creationdate><title>Sharp Large Deviations for the Fractional Ornstein–Uhlenbeck Process</title><author>Bercu, B. ; Coutin, L. ; Savy, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-6e868454584132930c192433cdbeec43d2825bec7f0af45e4497cab22c9c8fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Brownian motion</topic><topic>Investigations</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bercu, B.</creatorcontrib><creatorcontrib>Coutin, L.</creatorcontrib><creatorcontrib>Savy, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Theory of probability and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bercu, B.</au><au>Coutin, L.</au><au>Savy, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp Large Deviations for the Fractional Ornstein–Uhlenbeck Process</atitle><jtitle>Theory of probability and its applications</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>55</volume><issue>4</issue><spage>575</spage><epage>610</epage><pages>575-610</pages><issn>0040-585X</issn><issn>1095-7219</issn><eissn>1095-7219</eissn><abstract>We investigate the sharp large deviation properties of the energy and the maximum likelihood estimator for the Ornstein-Uhlenbeck process driven by a fractional Brownian motion with Hurst index greater than one half. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0040585X97985108</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0001-9839-9598</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-585X |
ispartof | Theory of probability and its applications, 2011-01, Vol.55 (4), p.575-610 |
issn | 0040-585X 1095-7219 1095-7219 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00386239v1 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Brownian motion Investigations Mathematics Probability Random variables |
title | Sharp Large Deviations for the Fractional Ornstein–Uhlenbeck Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20Large%20Deviations%20for%20the%20Fractional%20Ornstein%E2%80%93Uhlenbeck%20Process&rft.jtitle=Theory%20of%20probability%20and%20its%20applications&rft.au=Bercu,%20B.&rft.date=2011-01-01&rft.volume=55&rft.issue=4&rft.spage=575&rft.epage=610&rft.pages=575-610&rft.issn=0040-585X&rft.eissn=1095-7219&rft_id=info:doi/10.1137/S0040585X97985108&rft_dat=%3Cproquest_hal_p%3E3009048991%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372744368&rft_id=info:pmid/&rfr_iscdi=true |