Thermus thermophilus Glycosynthases for the Efficient Synthesis of Galactosyl and Glucosyl β-(1→3)-Glycosides

Inverting mutant glycosynthases were designed according to the Withers strategy, starting from wild‐type Thermus thermophilus retaining Tt‐β‐Gly glycosidase. Directed mutagenesis of catalytic nucleophile glutamate 338 by alanine, serine, and glycine afforded the E338A, E338S, and E338G mutant enzyme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European Journal of Organic Chemistry 2005-05, Vol.2005 (10), p.1977-1983
Hauptverfasser: Drone, Jullien, Feng, Hui-yong, Tellier, Charles, Hoffmann, Lionel, Tran, Vinh, Rabiller, Claude, Dion, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1983
container_issue 10
container_start_page 1977
container_title European Journal of Organic Chemistry
container_volume 2005
creator Drone, Jullien
Feng, Hui-yong
Tellier, Charles
Hoffmann, Lionel
Tran, Vinh
Rabiller, Claude
Dion, Michel
description Inverting mutant glycosynthases were designed according to the Withers strategy, starting from wild‐type Thermus thermophilus retaining Tt‐β‐Gly glycosidase. Directed mutagenesis of catalytic nucleophile glutamate 338 by alanine, serine, and glycine afforded the E338A, E338S, and E338G mutant enzymes, respectively. As was to be expected, the mutants were unable to catalyze the hydrolysis of the transglycosidation products. In agreement with previous results, the E338S and E338G catalysts were much more efficient than E338A. Moreover, our results showed that these enzymes were inactive in the hydrolysis of the α‐D‐glycopyranosyl fluorides used as donors, and so suitable experimental conditions, under which the rate of spontaneous hydrolysis of the donor was considerably lower than that of enzymatic transglycosidation, provided galactosyl and glucosyl β‐(1→3)‐glycosides in yields of up to 90 %. The structure of native Tt‐β‐Gly available in the Protein Data Bank offers a good basis for interpretation of our results by means of molecular modeling. Thus, in the case of the E338S mutant, a lower energy of the system was obtained when the donor and the acceptor were in the right position to form the β‐(1→3)‐glycosidic bond. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
doi_str_mv 10.1002/ejoc.200500014
format Article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00385557v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EJOC200500014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3614-cc3fba042b68ead83b2f0cd12d09927fd9846bcdb5b6fc4038589871313c4efa3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQRiMEEqWwZZ0lXaSMY-dvWUUlpapaAUWwsxzHVlzSpopTIBfgAByFg3AIToJDUMWO1Xg87400n2WdIxgiAPdSrEo-dAE8AEDkwOohiCIH_AgOzZtg4qAIPx5bJ1qvDBL5PupZ22UuqvVO23Vby22uCtMkRcNL3WzqnGmhbVlW7dweS6m4EpvavmtnQittl9JOWMF4bfjCZpvMyDv-03x-OBfo6-0dD5xuocqEPrWOJCu0OPutfev-aryMJ85skVzHo5nDsY-IwzmWKQPipn4oWBbi1JXAM-Rm5ig3kFkUEj_lWeqlvuQEcOiFURggjDAnQjLctwbd3pwVdFupNasaWjJFJ6MZbf-gdTwveEaGHXYsr0qtKyH3AgLaZkvbbOk-WyNEnfCiCtH8Q9PxdBH_dZ3OVboWr3uXVU_UD3Dg0Yd5QuP5bezdTab0Bn8DKxaP3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermus thermophilus Glycosynthases for the Efficient Synthesis of Galactosyl and Glucosyl β-(1→3)-Glycosides</title><source>Access via Wiley Online Library</source><creator>Drone, Jullien ; Feng, Hui-yong ; Tellier, Charles ; Hoffmann, Lionel ; Tran, Vinh ; Rabiller, Claude ; Dion, Michel</creator><creatorcontrib>Drone, Jullien ; Feng, Hui-yong ; Tellier, Charles ; Hoffmann, Lionel ; Tran, Vinh ; Rabiller, Claude ; Dion, Michel</creatorcontrib><description>Inverting mutant glycosynthases were designed according to the Withers strategy, starting from wild‐type Thermus thermophilus retaining Tt‐β‐Gly glycosidase. Directed mutagenesis of catalytic nucleophile glutamate 338 by alanine, serine, and glycine afforded the E338A, E338S, and E338G mutant enzymes, respectively. As was to be expected, the mutants were unable to catalyze the hydrolysis of the transglycosidation products. In agreement with previous results, the E338S and E338G catalysts were much more efficient than E338A. Moreover, our results showed that these enzymes were inactive in the hydrolysis of the α‐D‐glycopyranosyl fluorides used as donors, and so suitable experimental conditions, under which the rate of spontaneous hydrolysis of the donor was considerably lower than that of enzymatic transglycosidation, provided galactosyl and glucosyl β‐(1→3)‐glycosides in yields of up to 90 %. The structure of native Tt‐β‐Gly available in the Protein Data Bank offers a good basis for interpretation of our results by means of molecular modeling. Thus, in the case of the E338S mutant, a lower energy of the system was obtained when the donor and the acceptor were in the right position to form the β‐(1→3)‐glycosidic bond. (© Wiley‐VCH Verlag GmbH &amp; Co. KGaA, 69451 Weinheim, Germany, 2005)</description><identifier>ISSN: 1434-193X</identifier><identifier>EISSN: 1099-0690</identifier><identifier>DOI: 10.1002/ejoc.200500014</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Biotechnology ; Chemical Sciences ; Computer Science ; Glycosynthase ; Molecular modeling ; Organic chemistry ; Thermophilic β-glycosidase ; Thermus thermophilus ; Transglycosidation ; β-(1→3)-Disaccharides</subject><ispartof>European Journal of Organic Chemistry, 2005-05, Vol.2005 (10), p.1977-1983</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3614-cc3fba042b68ead83b2f0cd12d09927fd9846bcdb5b6fc4038589871313c4efa3</citedby><cites>FETCH-LOGICAL-c3614-cc3fba042b68ead83b2f0cd12d09927fd9846bcdb5b6fc4038589871313c4efa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejoc.200500014$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejoc.200500014$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,313,314,780,784,792,885,1417,27922,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00385557$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Drone, Jullien</creatorcontrib><creatorcontrib>Feng, Hui-yong</creatorcontrib><creatorcontrib>Tellier, Charles</creatorcontrib><creatorcontrib>Hoffmann, Lionel</creatorcontrib><creatorcontrib>Tran, Vinh</creatorcontrib><creatorcontrib>Rabiller, Claude</creatorcontrib><creatorcontrib>Dion, Michel</creatorcontrib><title>Thermus thermophilus Glycosynthases for the Efficient Synthesis of Galactosyl and Glucosyl β-(1→3)-Glycosides</title><title>European Journal of Organic Chemistry</title><addtitle>Eur. J. Org. Chem</addtitle><description>Inverting mutant glycosynthases were designed according to the Withers strategy, starting from wild‐type Thermus thermophilus retaining Tt‐β‐Gly glycosidase. Directed mutagenesis of catalytic nucleophile glutamate 338 by alanine, serine, and glycine afforded the E338A, E338S, and E338G mutant enzymes, respectively. As was to be expected, the mutants were unable to catalyze the hydrolysis of the transglycosidation products. In agreement with previous results, the E338S and E338G catalysts were much more efficient than E338A. Moreover, our results showed that these enzymes were inactive in the hydrolysis of the α‐D‐glycopyranosyl fluorides used as donors, and so suitable experimental conditions, under which the rate of spontaneous hydrolysis of the donor was considerably lower than that of enzymatic transglycosidation, provided galactosyl and glucosyl β‐(1→3)‐glycosides in yields of up to 90 %. The structure of native Tt‐β‐Gly available in the Protein Data Bank offers a good basis for interpretation of our results by means of molecular modeling. Thus, in the case of the E338S mutant, a lower energy of the system was obtained when the donor and the acceptor were in the right position to form the β‐(1→3)‐glycosidic bond. (© Wiley‐VCH Verlag GmbH &amp; Co. KGaA, 69451 Weinheim, Germany, 2005)</description><subject>Biotechnology</subject><subject>Chemical Sciences</subject><subject>Computer Science</subject><subject>Glycosynthase</subject><subject>Molecular modeling</subject><subject>Organic chemistry</subject><subject>Thermophilic β-glycosidase</subject><subject>Thermus thermophilus</subject><subject>Transglycosidation</subject><subject>β-(1→3)-Disaccharides</subject><issn>1434-193X</issn><issn>1099-0690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQRiMEEqWwZZ0lXaSMY-dvWUUlpapaAUWwsxzHVlzSpopTIBfgAByFg3AIToJDUMWO1Xg87400n2WdIxgiAPdSrEo-dAE8AEDkwOohiCIH_AgOzZtg4qAIPx5bJ1qvDBL5PupZ22UuqvVO23Vby22uCtMkRcNL3WzqnGmhbVlW7dweS6m4EpvavmtnQittl9JOWMF4bfjCZpvMyDv-03x-OBfo6-0dD5xuocqEPrWOJCu0OPutfev-aryMJ85skVzHo5nDsY-IwzmWKQPipn4oWBbi1JXAM-Rm5ig3kFkUEj_lWeqlvuQEcOiFURggjDAnQjLctwbd3pwVdFupNasaWjJFJ6MZbf-gdTwveEaGHXYsr0qtKyH3AgLaZkvbbOk-WyNEnfCiCtH8Q9PxdBH_dZ3OVboWr3uXVU_UD3Dg0Yd5QuP5bezdTab0Bn8DKxaP3Q</recordid><startdate>20050513</startdate><enddate>20050513</enddate><creator>Drone, Jullien</creator><creator>Feng, Hui-yong</creator><creator>Tellier, Charles</creator><creator>Hoffmann, Lionel</creator><creator>Tran, Vinh</creator><creator>Rabiller, Claude</creator><creator>Dion, Michel</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20050513</creationdate><title>Thermus thermophilus Glycosynthases for the Efficient Synthesis of Galactosyl and Glucosyl β-(1→3)-Glycosides</title><author>Drone, Jullien ; Feng, Hui-yong ; Tellier, Charles ; Hoffmann, Lionel ; Tran, Vinh ; Rabiller, Claude ; Dion, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3614-cc3fba042b68ead83b2f0cd12d09927fd9846bcdb5b6fc4038589871313c4efa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biotechnology</topic><topic>Chemical Sciences</topic><topic>Computer Science</topic><topic>Glycosynthase</topic><topic>Molecular modeling</topic><topic>Organic chemistry</topic><topic>Thermophilic β-glycosidase</topic><topic>Thermus thermophilus</topic><topic>Transglycosidation</topic><topic>β-(1→3)-Disaccharides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drone, Jullien</creatorcontrib><creatorcontrib>Feng, Hui-yong</creatorcontrib><creatorcontrib>Tellier, Charles</creatorcontrib><creatorcontrib>Hoffmann, Lionel</creatorcontrib><creatorcontrib>Tran, Vinh</creatorcontrib><creatorcontrib>Rabiller, Claude</creatorcontrib><creatorcontrib>Dion, Michel</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European Journal of Organic Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drone, Jullien</au><au>Feng, Hui-yong</au><au>Tellier, Charles</au><au>Hoffmann, Lionel</au><au>Tran, Vinh</au><au>Rabiller, Claude</au><au>Dion, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermus thermophilus Glycosynthases for the Efficient Synthesis of Galactosyl and Glucosyl β-(1→3)-Glycosides</atitle><jtitle>European Journal of Organic Chemistry</jtitle><addtitle>Eur. J. Org. Chem</addtitle><date>2005-05-13</date><risdate>2005</risdate><volume>2005</volume><issue>10</issue><spage>1977</spage><epage>1983</epage><pages>1977-1983</pages><issn>1434-193X</issn><eissn>1099-0690</eissn><abstract>Inverting mutant glycosynthases were designed according to the Withers strategy, starting from wild‐type Thermus thermophilus retaining Tt‐β‐Gly glycosidase. Directed mutagenesis of catalytic nucleophile glutamate 338 by alanine, serine, and glycine afforded the E338A, E338S, and E338G mutant enzymes, respectively. As was to be expected, the mutants were unable to catalyze the hydrolysis of the transglycosidation products. In agreement with previous results, the E338S and E338G catalysts were much more efficient than E338A. Moreover, our results showed that these enzymes were inactive in the hydrolysis of the α‐D‐glycopyranosyl fluorides used as donors, and so suitable experimental conditions, under which the rate of spontaneous hydrolysis of the donor was considerably lower than that of enzymatic transglycosidation, provided galactosyl and glucosyl β‐(1→3)‐glycosides in yields of up to 90 %. The structure of native Tt‐β‐Gly available in the Protein Data Bank offers a good basis for interpretation of our results by means of molecular modeling. Thus, in the case of the E338S mutant, a lower energy of the system was obtained when the donor and the acceptor were in the right position to form the β‐(1→3)‐glycosidic bond. (© Wiley‐VCH Verlag GmbH &amp; Co. KGaA, 69451 Weinheim, Germany, 2005)</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ejoc.200500014</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-193X
ispartof European Journal of Organic Chemistry, 2005-05, Vol.2005 (10), p.1977-1983
issn 1434-193X
1099-0690
language eng
recordid cdi_hal_primary_oai_HAL_hal_00385557v1
source Access via Wiley Online Library
subjects Biotechnology
Chemical Sciences
Computer Science
Glycosynthase
Molecular modeling
Organic chemistry
Thermophilic β-glycosidase
Thermus thermophilus
Transglycosidation
β-(1→3)-Disaccharides
title Thermus thermophilus Glycosynthases for the Efficient Synthesis of Galactosyl and Glucosyl β-(1→3)-Glycosides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermus%20thermophilus%20Glycosynthases%20for%20the%20Efficient%20Synthesis%20of%20Galactosyl%20and%20Glucosyl%20%CE%B2-(1%E2%86%923)-Glycosides&rft.jtitle=European%20Journal%20of%20Organic%20Chemistry&rft.au=Drone,%20Jullien&rft.date=2005-05-13&rft.volume=2005&rft.issue=10&rft.spage=1977&rft.epage=1983&rft.pages=1977-1983&rft.issn=1434-193X&rft.eissn=1099-0690&rft_id=info:doi/10.1002/ejoc.200500014&rft_dat=%3Cwiley_hal_p%3EEJOC200500014%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true