Analysis of the vibrational mode spectrum of a linear chain with spatially exponential properties
We deduce the dynamic frequency-domain-lattice Green’s function of a linear chain with properties (masses and next-neighbor spring constants) of exponential spatial dependence. We analyze the system as discrete chain as well as the continuous limiting case which represents an elastic 1D exponentiall...
Gespeichert in:
Veröffentlicht in: | International journal of engineering science 2009-02, Vol.47 (2), p.209-220 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 220 |
---|---|
container_issue | 2 |
container_start_page | 209 |
container_title | International journal of engineering science |
container_volume | 47 |
creator | Michelitsch, Thomas M. Maugin, Gérard A. Nowakowski, Andrzej F. Nicolleau, Franck C.G.A. |
description | We deduce the dynamic frequency-domain-lattice Green’s function of a linear chain with properties (masses and next-neighbor spring constants) of exponential spatial dependence. We analyze the system as discrete chain as well as the continuous limiting case which represents an elastic 1D exponentially graded material. The discrete model yields closed form expressions for the
N
×
N
Green’s function for an arbitrary number
N
=
2
,
…
,
∞
of particles of the chain. Utilizing this Green’s function yields an explicit expression for the vibrational mode density. Despite of its simplicity the model reflects some characteristics of the dynamics of a 1D exponentially graded elastic material. As a special case the well-known expressions for the Green’s function and oscillator density of the homogeneous linear chain are contained in the model. The width of the frequency band is determined by the grading parameter which characterizes the exponential spatial dependence of the properties. In the limiting case of large grading parameter, the frequency band is localized around a single finite frequency where the band width tends to zero inversely with the grading parameter. In the continuum limit the discrete Green’s function recovers the Green’s function of the continuous equation of motion which takes in the time domain the form of a Klein–Gordon equation. |
doi_str_mv | 10.1016/j.ijengsci.2008.08.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00374799v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722508001559</els_id><sourcerecordid>33350589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-2dea11c7b57ab22e6c4d38efa798e0040ec4a4bfe0895122272f915d1826ccea3</originalsourceid><addsrcrecordid>eNqFkEFrGzEQhUVpoW6SvxB0aaGHdUbaXUu61YS0CRh6Sc9irJ2tZeTVVlq79b-vFqe5FgYGzXx6b3iM3QpYChCru_3S72n4mZ1fSgC9nEuIN2whtDKVFEa9ZQsACZWSsn3PPuS8B4C2NmbBcD1gOGefeez5tCN-8tuEk49lzA-xI55HclM6HmYAefADYeJuh37gv_20K_uCYwhnTn_GONAwv_iY4khp8pSv2bseQ6abl37Ffnx9eL5_rDbfvz3drzeVa9p2qmRHKIRT21bhVkpauaarNfWojCaABsg12Gx7Am1aIaVUsjei7YSWK-cI6yv2-aK7w2DH5A-Yzjait4_rjZ1nALVqlDEnUdhPF7ac-etIebIHnx2FgAPFY7Z1XbfQalPA1QV0KeacqH9VFmDn9O3e_kvfzunbucTs8PHFAbPD0CccnM-vv6WQ0GgtC_flwlGJ5uQp2aJEg6POp5K77aL_n9VfkAufWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33350589</pqid></control><display><type>article</type><title>Analysis of the vibrational mode spectrum of a linear chain with spatially exponential properties</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Michelitsch, Thomas M. ; Maugin, Gérard A. ; Nowakowski, Andrzej F. ; Nicolleau, Franck C.G.A.</creator><creatorcontrib>Michelitsch, Thomas M. ; Maugin, Gérard A. ; Nowakowski, Andrzej F. ; Nicolleau, Franck C.G.A.</creatorcontrib><description>We deduce the dynamic frequency-domain-lattice Green’s function of a linear chain with properties (masses and next-neighbor spring constants) of exponential spatial dependence. We analyze the system as discrete chain as well as the continuous limiting case which represents an elastic 1D exponentially graded material. The discrete model yields closed form expressions for the
N
×
N
Green’s function for an arbitrary number
N
=
2
,
…
,
∞
of particles of the chain. Utilizing this Green’s function yields an explicit expression for the vibrational mode density. Despite of its simplicity the model reflects some characteristics of the dynamics of a 1D exponentially graded elastic material. As a special case the well-known expressions for the Green’s function and oscillator density of the homogeneous linear chain are contained in the model. The width of the frequency band is determined by the grading parameter which characterizes the exponential spatial dependence of the properties. In the limiting case of large grading parameter, the frequency band is localized around a single finite frequency where the band width tends to zero inversely with the grading parameter. In the continuum limit the discrete Green’s function recovers the Green’s function of the continuous equation of motion which takes in the time domain the form of a Klein–Gordon equation.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/j.ijengsci.2008.08.011</identifier><identifier>CODEN: IJESAN</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Classical and quantum physics: mechanics and fields ; Condensed Matter ; Continuum limit ; Dynamic lattice Green’s function ; Engineering Sciences ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Graded materials ; Klein–Gordon equation ; Lattice dynamics ; Linear chain ; Materials and structures in mechanics ; Materials Science ; Mathematical Physics ; Mathematics ; Mechanics ; Oscillator density ; Physics ; Quantum mechanics ; Solid mechanics ; Solutions of wave equations: bound states ; Spectral Theory ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>International journal of engineering science, 2009-02, Vol.47 (2), p.209-220</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-2dea11c7b57ab22e6c4d38efa798e0040ec4a4bfe0895122272f915d1826ccea3</citedby><cites>FETCH-LOGICAL-c455t-2dea11c7b57ab22e6c4d38efa798e0040ec4a4bfe0895122272f915d1826ccea3</cites><orcidid>0000-0002-1942-1783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020722508001559$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21204882$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00374799$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Michelitsch, Thomas M.</creatorcontrib><creatorcontrib>Maugin, Gérard A.</creatorcontrib><creatorcontrib>Nowakowski, Andrzej F.</creatorcontrib><creatorcontrib>Nicolleau, Franck C.G.A.</creatorcontrib><title>Analysis of the vibrational mode spectrum of a linear chain with spatially exponential properties</title><title>International journal of engineering science</title><description>We deduce the dynamic frequency-domain-lattice Green’s function of a linear chain with properties (masses and next-neighbor spring constants) of exponential spatial dependence. We analyze the system as discrete chain as well as the continuous limiting case which represents an elastic 1D exponentially graded material. The discrete model yields closed form expressions for the
N
×
N
Green’s function for an arbitrary number
N
=
2
,
…
,
∞
of particles of the chain. Utilizing this Green’s function yields an explicit expression for the vibrational mode density. Despite of its simplicity the model reflects some characteristics of the dynamics of a 1D exponentially graded elastic material. As a special case the well-known expressions for the Green’s function and oscillator density of the homogeneous linear chain are contained in the model. The width of the frequency band is determined by the grading parameter which characterizes the exponential spatial dependence of the properties. In the limiting case of large grading parameter, the frequency band is localized around a single finite frequency where the band width tends to zero inversely with the grading parameter. In the continuum limit the discrete Green’s function recovers the Green’s function of the continuous equation of motion which takes in the time domain the form of a Klein–Gordon equation.</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Condensed Matter</subject><subject>Continuum limit</subject><subject>Dynamic lattice Green’s function</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Graded materials</subject><subject>Klein–Gordon equation</subject><subject>Lattice dynamics</subject><subject>Linear chain</subject><subject>Materials and structures in mechanics</subject><subject>Materials Science</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Oscillator density</subject><subject>Physics</subject><subject>Quantum mechanics</subject><subject>Solid mechanics</subject><subject>Solutions of wave equations: bound states</subject><subject>Spectral Theory</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEFrGzEQhUVpoW6SvxB0aaGHdUbaXUu61YS0CRh6Sc9irJ2tZeTVVlq79b-vFqe5FgYGzXx6b3iM3QpYChCru_3S72n4mZ1fSgC9nEuIN2whtDKVFEa9ZQsACZWSsn3PPuS8B4C2NmbBcD1gOGefeez5tCN-8tuEk49lzA-xI55HclM6HmYAefADYeJuh37gv_20K_uCYwhnTn_GONAwv_iY4khp8pSv2bseQ6abl37Ffnx9eL5_rDbfvz3drzeVa9p2qmRHKIRT21bhVkpauaarNfWojCaABsg12Gx7Am1aIaVUsjei7YSWK-cI6yv2-aK7w2DH5A-Yzjait4_rjZ1nALVqlDEnUdhPF7ac-etIebIHnx2FgAPFY7Z1XbfQalPA1QV0KeacqH9VFmDn9O3e_kvfzunbucTs8PHFAbPD0CccnM-vv6WQ0GgtC_flwlGJ5uQp2aJEg6POp5K77aL_n9VfkAufWw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Michelitsch, Thomas M.</creator><creator>Maugin, Gérard A.</creator><creator>Nowakowski, Andrzej F.</creator><creator>Nicolleau, Franck C.G.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1942-1783</orcidid></search><sort><creationdate>20090201</creationdate><title>Analysis of the vibrational mode spectrum of a linear chain with spatially exponential properties</title><author>Michelitsch, Thomas M. ; Maugin, Gérard A. ; Nowakowski, Andrzej F. ; Nicolleau, Franck C.G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-2dea11c7b57ab22e6c4d38efa798e0040ec4a4bfe0895122272f915d1826ccea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Condensed Matter</topic><topic>Continuum limit</topic><topic>Dynamic lattice Green’s function</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Graded materials</topic><topic>Klein–Gordon equation</topic><topic>Lattice dynamics</topic><topic>Linear chain</topic><topic>Materials and structures in mechanics</topic><topic>Materials Science</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Oscillator density</topic><topic>Physics</topic><topic>Quantum mechanics</topic><topic>Solid mechanics</topic><topic>Solutions of wave equations: bound states</topic><topic>Spectral Theory</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michelitsch, Thomas M.</creatorcontrib><creatorcontrib>Maugin, Gérard A.</creatorcontrib><creatorcontrib>Nowakowski, Andrzej F.</creatorcontrib><creatorcontrib>Nicolleau, Franck C.G.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michelitsch, Thomas M.</au><au>Maugin, Gérard A.</au><au>Nowakowski, Andrzej F.</au><au>Nicolleau, Franck C.G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the vibrational mode spectrum of a linear chain with spatially exponential properties</atitle><jtitle>International journal of engineering science</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>47</volume><issue>2</issue><spage>209</spage><epage>220</epage><pages>209-220</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><coden>IJESAN</coden><abstract>We deduce the dynamic frequency-domain-lattice Green’s function of a linear chain with properties (masses and next-neighbor spring constants) of exponential spatial dependence. We analyze the system as discrete chain as well as the continuous limiting case which represents an elastic 1D exponentially graded material. The discrete model yields closed form expressions for the
N
×
N
Green’s function for an arbitrary number
N
=
2
,
…
,
∞
of particles of the chain. Utilizing this Green’s function yields an explicit expression for the vibrational mode density. Despite of its simplicity the model reflects some characteristics of the dynamics of a 1D exponentially graded elastic material. As a special case the well-known expressions for the Green’s function and oscillator density of the homogeneous linear chain are contained in the model. The width of the frequency band is determined by the grading parameter which characterizes the exponential spatial dependence of the properties. In the limiting case of large grading parameter, the frequency band is localized around a single finite frequency where the band width tends to zero inversely with the grading parameter. In the continuum limit the discrete Green’s function recovers the Green’s function of the continuous equation of motion which takes in the time domain the form of a Klein–Gordon equation.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijengsci.2008.08.011</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1942-1783</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7225 |
ispartof | International journal of engineering science, 2009-02, Vol.47 (2), p.209-220 |
issn | 0020-7225 1879-2197 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00374799v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Classical and quantum physics: mechanics and fields Condensed Matter Continuum limit Dynamic lattice Green’s function Engineering Sciences Exact sciences and technology Fundamental areas of phenomenology (including applications) Graded materials Klein–Gordon equation Lattice dynamics Linear chain Materials and structures in mechanics Materials Science Mathematical Physics Mathematics Mechanics Oscillator density Physics Quantum mechanics Solid mechanics Solutions of wave equations: bound states Spectral Theory Static elasticity (thermoelasticity...) Structural and continuum mechanics |
title | Analysis of the vibrational mode spectrum of a linear chain with spatially exponential properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20vibrational%20mode%20spectrum%20of%20a%20linear%20chain%20with%20spatially%20exponential%20properties&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Michelitsch,%20Thomas%20M.&rft.date=2009-02-01&rft.volume=47&rft.issue=2&rft.spage=209&rft.epage=220&rft.pages=209-220&rft.issn=0020-7225&rft.eissn=1879-2197&rft.coden=IJESAN&rft_id=info:doi/10.1016/j.ijengsci.2008.08.011&rft_dat=%3Cproquest_hal_p%3E33350589%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33350589&rft_id=info:pmid/&rft_els_id=S0020722508001559&rfr_iscdi=true |