On 4-point correlation functions in simple polymer models

We derive an exact formula for the covariance of cartesian distances in two simple polymer models, the freely-jointed chain and a discrete flexible model with nearest-neighbor interaction. We show that even in the interaction-free case correlations exist as long as the two distances at least partial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2009-04
Hauptverfasser: Hagmann, Johannes-Geert, Kozlowski, Karol K., Theodorakopoulos, Nikos, Peyrard, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of statistical mechanics
container_volume
creator Hagmann, Johannes-Geert
Kozlowski, Karol K.
Theodorakopoulos, Nikos
Peyrard, Michel
description We derive an exact formula for the covariance of cartesian distances in two simple polymer models, the freely-jointed chain and a discrete flexible model with nearest-neighbor interaction. We show that even in the interaction-free case correlations exist as long as the two distances at least partially share the same segments. For the interacting case, we demonstrate that the naive expectation of increasing correlations with increasing interaction strength only holds in a finite range of values. Some suggestions for future single-molecule experiments are made.
doi_str_mv 10.1088/1742-5468/2009/04/P04011
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00370639v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00370639v2</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_00370639v23</originalsourceid><addsrcrecordid>eNqVjTsLwjAYRYMoWB__IatD7Zc2tukoonQQdHAPoaYYyaMkVei_14KIq9M93HPhIoQJrAkwlpCCpvGG5ixJAcoEaHIGCoSMUPRV4x-eolkId4AsBcoiVJ4spnHrlO1w7byXWnTKWdw8bD1AwMrioEyrJW6d7o302Lir1GGBJo3QQS4_OUerw_6yq-Kb0Lz1ygjfcycUr7ZHPnTvzwLyrHym2T_bF7zeQkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On 4-point correlation functions in simple polymer models</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Hagmann, Johannes-Geert ; Kozlowski, Karol K. ; Theodorakopoulos, Nikos ; Peyrard, Michel</creator><creatorcontrib>Hagmann, Johannes-Geert ; Kozlowski, Karol K. ; Theodorakopoulos, Nikos ; Peyrard, Michel</creatorcontrib><description>We derive an exact formula for the covariance of cartesian distances in two simple polymer models, the freely-jointed chain and a discrete flexible model with nearest-neighbor interaction. We show that even in the interaction-free case correlations exist as long as the two distances at least partially share the same segments. For the interacting case, we demonstrate that the naive expectation of increasing correlations with increasing interaction strength only holds in a finite range of values. Some suggestions for future single-molecule experiments are made.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/2009/04/P04011</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Condensed Matter ; Physics ; Soft Condensed Matter ; Statistical Mechanics</subject><ispartof>Journal of statistical mechanics, 2009-04</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5861-6399 ; 0000-0002-5861-6399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00370639$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hagmann, Johannes-Geert</creatorcontrib><creatorcontrib>Kozlowski, Karol K.</creatorcontrib><creatorcontrib>Theodorakopoulos, Nikos</creatorcontrib><creatorcontrib>Peyrard, Michel</creatorcontrib><title>On 4-point correlation functions in simple polymer models</title><title>Journal of statistical mechanics</title><description>We derive an exact formula for the covariance of cartesian distances in two simple polymer models, the freely-jointed chain and a discrete flexible model with nearest-neighbor interaction. We show that even in the interaction-free case correlations exist as long as the two distances at least partially share the same segments. For the interacting case, we demonstrate that the naive expectation of increasing correlations with increasing interaction strength only holds in a finite range of values. Some suggestions for future single-molecule experiments are made.</description><subject>Condensed Matter</subject><subject>Physics</subject><subject>Soft Condensed Matter</subject><subject>Statistical Mechanics</subject><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqVjTsLwjAYRYMoWB__IatD7Zc2tukoonQQdHAPoaYYyaMkVei_14KIq9M93HPhIoQJrAkwlpCCpvGG5ixJAcoEaHIGCoSMUPRV4x-eolkId4AsBcoiVJ4spnHrlO1w7byXWnTKWdw8bD1AwMrioEyrJW6d7o302Lir1GGBJo3QQS4_OUerw_6yq-Kb0Lz1ygjfcycUr7ZHPnTvzwLyrHym2T_bF7zeQkA</recordid><startdate>20090417</startdate><enddate>20090417</enddate><creator>Hagmann, Johannes-Geert</creator><creator>Kozlowski, Karol K.</creator><creator>Theodorakopoulos, Nikos</creator><creator>Peyrard, Michel</creator><general>IOP Publishing</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5861-6399</orcidid><orcidid>https://orcid.org/0000-0002-5861-6399</orcidid></search><sort><creationdate>20090417</creationdate><title>On 4-point correlation functions in simple polymer models</title><author>Hagmann, Johannes-Geert ; Kozlowski, Karol K. ; Theodorakopoulos, Nikos ; Peyrard, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_00370639v23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><topic>Soft Condensed Matter</topic><topic>Statistical Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagmann, Johannes-Geert</creatorcontrib><creatorcontrib>Kozlowski, Karol K.</creatorcontrib><creatorcontrib>Theodorakopoulos, Nikos</creatorcontrib><creatorcontrib>Peyrard, Michel</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagmann, Johannes-Geert</au><au>Kozlowski, Karol K.</au><au>Theodorakopoulos, Nikos</au><au>Peyrard, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On 4-point correlation functions in simple polymer models</atitle><jtitle>Journal of statistical mechanics</jtitle><date>2009-04-17</date><risdate>2009</risdate><issn>1742-5468</issn><eissn>1742-5468</eissn><abstract>We derive an exact formula for the covariance of cartesian distances in two simple polymer models, the freely-jointed chain and a discrete flexible model with nearest-neighbor interaction. We show that even in the interaction-free case correlations exist as long as the two distances at least partially share the same segments. For the interacting case, we demonstrate that the naive expectation of increasing correlations with increasing interaction strength only holds in a finite range of values. Some suggestions for future single-molecule experiments are made.</abstract><pub>IOP Publishing</pub><doi>10.1088/1742-5468/2009/04/P04011</doi><orcidid>https://orcid.org/0000-0002-5861-6399</orcidid><orcidid>https://orcid.org/0000-0002-5861-6399</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5468
ispartof Journal of statistical mechanics, 2009-04
issn 1742-5468
1742-5468
language eng
recordid cdi_hal_primary_oai_HAL_hal_00370639v2
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Condensed Matter
Physics
Soft Condensed Matter
Statistical Mechanics
title On 4-point correlation functions in simple polymer models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%204-point%20correlation%20functions%20in%20simple%20polymer%20models&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Hagmann,%20Johannes-Geert&rft.date=2009-04-17&rft.issn=1742-5468&rft.eissn=1742-5468&rft_id=info:doi/10.1088/1742-5468/2009/04/P04011&rft_dat=%3Chal%3Eoai_HAL_hal_00370639v2%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true