Nonlinear Censored Regression Using Synthetic Data

The problem of estimating a nonlinear regression model, when the dependent variable is randomly censored, is considered. The parameter of the model is estimated by least squares using synthetic data. Consistency and asymptotic normality of the least squares estimators are derived. The proofs are bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2008-06, Vol.35 (2), p.248-265
Hauptverfasser: DELECROIX, MICHEL, LOPEZ, OLIVIER, PATILEA, VALENTIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of estimating a nonlinear regression model, when the dependent variable is randomly censored, is considered. The parameter of the model is estimated by least squares using synthetic data. Consistency and asymptotic normality of the least squares estimators are derived. The proofs are based on a novel approach that uses i.i.d. representations of synthetic data through Kaplan—Meier integrals. The asymptotic results are supported by a small simulation study.
ISSN:0303-6898
1467-9469
DOI:10.1111/j.1467-9469.2007.00591.x