Structural evolution of zirconium carbide under ion irradiation

Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy io...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2008-02, Vol.373 (1), p.123-129
Hauptverfasser: Gosset, D., Dollé, M., Simeone, D., Baldinozzi, G., Thomé, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue 1
container_start_page 123
container_title Journal of nuclear materials
container_volume 373
creator Gosset, D.
Dollé, M.
Simeone, D.
Baldinozzi, G.
Thomé, L.
description Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10 11 to 5 × 10 15 cm −2) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (10 14 cm −2), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10 14 ions/cm 2, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.
doi_str_mv 10.1016/j.jnucmat.2007.05.034
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00360437v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002231150700801X</els_id><sourcerecordid>31896429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-bf5724979eebfbca75d2f31ceb0072cf3d587d2baa430b7ec8b81e2ded7ebd703</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEXBQ-tk6TZtCcRUVdY8KCeQz6mmKXbrEm7oL_ell28ehqYed6Z4SHkkkJBgS5u18W6G-xG9wUDkAWIAnh5RGa0kjwvKwbHZAbAWM4pFafkLKU1AIgaxIzcvfVxsP0QdZvhLrRD70OXhSb78dGGzg-bzOpovMNs6BzGbBr7GLXzekLPyUmj24QXhzonH0-P7w_LfPX6_PJwv8ptKaHPTSMkK2tZI5rGWC2FYw2nFs34MbMNd6KSjhmtSw5Goq1MRZE5dBKNk8Dn5Ga_91O3ahv9RsdvFbRXy_uVmnoAfAEllzs2std7dhvD14CpVxufLLat7jAMSXFa1YuS1SMo9qCNIaWIzd9mCmpSq9bqoFZNahUINaodc1eHAzpZ3TZRd9anv_CIskqIauTu9hyOZnYeo0rWY2fR-Yi2Vy74fy79AphIkso</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31896429</pqid></control><display><type>article</type><title>Structural evolution of zirconium carbide under ion irradiation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gosset, D. ; Dollé, M. ; Simeone, D. ; Baldinozzi, G. ; Thomé, L.</creator><creatorcontrib>Gosset, D. ; Dollé, M. ; Simeone, D. ; Baldinozzi, G. ; Thomé, L.</creatorcontrib><description>Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10 11 to 5 × 10 15 cm −2) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (&lt;10 12 cm −2), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (&gt;10 14 cm −2), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10 14 ions/cm 2, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2007.05.034</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Condensed Matter ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Materials Science ; Nuclear fuels ; Physics</subject><ispartof>Journal of nuclear materials, 2008-02, Vol.373 (1), p.123-129</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-bf5724979eebfbca75d2f31ceb0072cf3d587d2baa430b7ec8b81e2ded7ebd703</citedby><cites>FETCH-LOGICAL-c470t-bf5724979eebfbca75d2f31ceb0072cf3d587d2baa430b7ec8b81e2ded7ebd703</cites><orcidid>0000-0002-6909-0716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002231150700801X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20028558$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://in2p3.hal.science/hal-00360437$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gosset, D.</creatorcontrib><creatorcontrib>Dollé, M.</creatorcontrib><creatorcontrib>Simeone, D.</creatorcontrib><creatorcontrib>Baldinozzi, G.</creatorcontrib><creatorcontrib>Thomé, L.</creatorcontrib><title>Structural evolution of zirconium carbide under ion irradiation</title><title>Journal of nuclear materials</title><description>Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10 11 to 5 × 10 15 cm −2) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (&lt;10 12 cm −2), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (&gt;10 14 cm −2), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10 14 ions/cm 2, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.</description><subject>Applied sciences</subject><subject>Condensed Matter</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Materials Science</subject><subject>Nuclear fuels</subject><subject>Physics</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEXBQ-tk6TZtCcRUVdY8KCeQz6mmKXbrEm7oL_ell28ehqYed6Z4SHkkkJBgS5u18W6G-xG9wUDkAWIAnh5RGa0kjwvKwbHZAbAWM4pFafkLKU1AIgaxIzcvfVxsP0QdZvhLrRD70OXhSb78dGGzg-bzOpovMNs6BzGbBr7GLXzekLPyUmj24QXhzonH0-P7w_LfPX6_PJwv8ptKaHPTSMkK2tZI5rGWC2FYw2nFs34MbMNd6KSjhmtSw5Goq1MRZE5dBKNk8Dn5Ga_91O3ahv9RsdvFbRXy_uVmnoAfAEllzs2std7dhvD14CpVxufLLat7jAMSXFa1YuS1SMo9qCNIaWIzd9mCmpSq9bqoFZNahUINaodc1eHAzpZ3TZRd9anv_CIskqIauTu9hyOZnYeo0rWY2fR-Yi2Vy74fy79AphIkso</recordid><startdate>20080215</startdate><enddate>20080215</enddate><creator>Gosset, D.</creator><creator>Dollé, M.</creator><creator>Simeone, D.</creator><creator>Baldinozzi, G.</creator><creator>Thomé, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6909-0716</orcidid></search><sort><creationdate>20080215</creationdate><title>Structural evolution of zirconium carbide under ion irradiation</title><author>Gosset, D. ; Dollé, M. ; Simeone, D. ; Baldinozzi, G. ; Thomé, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-bf5724979eebfbca75d2f31ceb0072cf3d587d2baa430b7ec8b81e2ded7ebd703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Condensed Matter</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Materials Science</topic><topic>Nuclear fuels</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gosset, D.</creatorcontrib><creatorcontrib>Dollé, M.</creatorcontrib><creatorcontrib>Simeone, D.</creatorcontrib><creatorcontrib>Baldinozzi, G.</creatorcontrib><creatorcontrib>Thomé, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gosset, D.</au><au>Dollé, M.</au><au>Simeone, D.</au><au>Baldinozzi, G.</au><au>Thomé, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural evolution of zirconium carbide under ion irradiation</atitle><jtitle>Journal of nuclear materials</jtitle><date>2008-02-15</date><risdate>2008</risdate><volume>373</volume><issue>1</issue><spage>123</spage><epage>129</epage><pages>123-129</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10 11 to 5 × 10 15 cm −2) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (&lt;10 12 cm −2), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (&gt;10 14 cm −2), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10 14 ions/cm 2, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2007.05.034</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6909-0716</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2008-02, Vol.373 (1), p.123-129
issn 0022-3115
1873-4820
language eng
recordid cdi_hal_primary_oai_HAL_hal_00360437v2
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Condensed Matter
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
Installations for energy generation and conversion: thermal and electrical energy
Materials Science
Nuclear fuels
Physics
title Structural evolution of zirconium carbide under ion irradiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20evolution%20of%20zirconium%20carbide%20under%20ion%20irradiation&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Gosset,%20D.&rft.date=2008-02-15&rft.volume=373&rft.issue=1&rft.spage=123&rft.epage=129&rft.pages=123-129&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2007.05.034&rft_dat=%3Cproquest_hal_p%3E31896429%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31896429&rft_id=info:pmid/&rft_els_id=S002231150700801X&rfr_iscdi=true