Updatable timed automata

We investigate extensions of Alur and Dill's timed automata, based on the possibility to update the clocks in a more elaborate way than simply reset them to zero. We call these automata updatable timed automata. They form an undecidable class of models, in the sense that emptiness checking is n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2004-08, Vol.321 (2), p.291-345
Hauptverfasser: Bouyer, Patricia, Dufourd, Catherine, Fleury, Emmanuel, Petit, Antoine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 345
container_issue 2
container_start_page 291
container_title Theoretical computer science
container_volume 321
creator Bouyer, Patricia
Dufourd, Catherine
Fleury, Emmanuel
Petit, Antoine
description We investigate extensions of Alur and Dill's timed automata, based on the possibility to update the clocks in a more elaborate way than simply reset them to zero. We call these automata updatable timed automata. They form an undecidable class of models, in the sense that emptiness checking is not decidable. However, using an extension of the region graph construction, we exhibit interesting decidable subclasses. In a surprising way, decidability depends on the nature of the clock constraints which are used, diagonal-free or not, whereas these constraints play identical roles in timed automata. We thus describe in a quite precise way the thin frontier between decidable and undecidable classes of updatable timed automata. We also study the expressive power of updatable timed automata. It turns out that any updatable automaton belonging to some decidable subclass can be effectively transformed into an equivalent timed automaton without updates but with silent transitions. The transformation suffers from an enormous combinatorics blow-up which seems unavoidable. Therefore, updatable timed automata appear to be a concise model for representing and analyzing large classes of timed systems.
doi_str_mv 10.1016/j.tcs.2004.04.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00350196v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397504002658</els_id><sourcerecordid>28275700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-c7fc4ed4391d026a2358c90e65273f3a3ff1a8592f1acec269f709afbe05fb123</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt3vfWi4GHXSbLZbPAkRa1Q8GLPIc1OMGW3W5NtwX9vli16cxgYGL73hnmE3FDIKdDyYZP3NuYMoMiHBn5CJrSSKmNMFadkAhyKjCspzslFjBtIJWQ5IderXW16s25w1vsW65nZ912bNpfkzJkm4tVxTsnq5fljvsiW769v86dlZgvO-8xKZwusC65oDaw0jIvKKsBSMMkdN9w5aiqhWBoWLSuVk6CMWyMIt6aMT8n96PtpGr0LvjXhW3fG68XTUg-79IsAqsoDTezdyO5C97XH2OvWR4tNY7bY7aNmFZNCJsGU0BG0oYsxoPt1pqCHvPRGp7z0kJceGnjS3B7NTbSmccFsrY9_QqGqStAicY8jhymVg8ego_W4tVj7gLbXdef_ufIDeyp9TA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28275700</pqid></control><display><type>article</type><title>Updatable timed automata</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bouyer, Patricia ; Dufourd, Catherine ; Fleury, Emmanuel ; Petit, Antoine</creator><creatorcontrib>Bouyer, Patricia ; Dufourd, Catherine ; Fleury, Emmanuel ; Petit, Antoine</creatorcontrib><description>We investigate extensions of Alur and Dill's timed automata, based on the possibility to update the clocks in a more elaborate way than simply reset them to zero. We call these automata updatable timed automata. They form an undecidable class of models, in the sense that emptiness checking is not decidable. However, using an extension of the region graph construction, we exhibit interesting decidable subclasses. In a surprising way, decidability depends on the nature of the clock constraints which are used, diagonal-free or not, whereas these constraints play identical roles in timed automata. We thus describe in a quite precise way the thin frontier between decidable and undecidable classes of updatable timed automata. We also study the expressive power of updatable timed automata. It turns out that any updatable automaton belonging to some decidable subclass can be effectively transformed into an equivalent timed automaton without updates but with silent transitions. The transformation suffers from an enormous combinatorics blow-up which seems unavoidable. Therefore, updatable timed automata appear to be a concise model for representing and analyzing large classes of timed systems.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2004.04.003</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Automata. Abstract machines. Turing machines ; Combinatorics ; Combinatorics. Ordered structures ; Computer Science ; Computer science; control theory; systems ; Exact sciences and technology ; General logic ; Logic and foundations ; Mathematical logic, foundations, set theory ; Mathematics ; Other ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2004-08, Vol.321 (2), p.291-345</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-c7fc4ed4391d026a2358c90e65273f3a3ff1a8592f1acec269f709afbe05fb123</citedby><cites>FETCH-LOGICAL-c433t-c7fc4ed4391d026a2358c90e65273f3a3ff1a8592f1acec269f709afbe05fb123</cites><orcidid>0000-0002-7010-1072 ; 0000-0002-2823-0911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304397504002658$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15988514$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00350196$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouyer, Patricia</creatorcontrib><creatorcontrib>Dufourd, Catherine</creatorcontrib><creatorcontrib>Fleury, Emmanuel</creatorcontrib><creatorcontrib>Petit, Antoine</creatorcontrib><title>Updatable timed automata</title><title>Theoretical computer science</title><description>We investigate extensions of Alur and Dill's timed automata, based on the possibility to update the clocks in a more elaborate way than simply reset them to zero. We call these automata updatable timed automata. They form an undecidable class of models, in the sense that emptiness checking is not decidable. However, using an extension of the region graph construction, we exhibit interesting decidable subclasses. In a surprising way, decidability depends on the nature of the clock constraints which are used, diagonal-free or not, whereas these constraints play identical roles in timed automata. We thus describe in a quite precise way the thin frontier between decidable and undecidable classes of updatable timed automata. We also study the expressive power of updatable timed automata. It turns out that any updatable automaton belonging to some decidable subclass can be effectively transformed into an equivalent timed automaton without updates but with silent transitions. The transformation suffers from an enormous combinatorics blow-up which seems unavoidable. Therefore, updatable timed automata appear to be a concise model for representing and analyzing large classes of timed systems.</description><subject>Applied sciences</subject><subject>Automata. Abstract machines. Turing machines</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>General logic</subject><subject>Logic and foundations</subject><subject>Mathematical logic, foundations, set theory</subject><subject>Mathematics</subject><subject>Other</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt3vfWi4GHXSbLZbPAkRa1Q8GLPIc1OMGW3W5NtwX9vli16cxgYGL73hnmE3FDIKdDyYZP3NuYMoMiHBn5CJrSSKmNMFadkAhyKjCspzslFjBtIJWQ5IderXW16s25w1vsW65nZ912bNpfkzJkm4tVxTsnq5fljvsiW769v86dlZgvO-8xKZwusC65oDaw0jIvKKsBSMMkdN9w5aiqhWBoWLSuVk6CMWyMIt6aMT8n96PtpGr0LvjXhW3fG68XTUg-79IsAqsoDTezdyO5C97XH2OvWR4tNY7bY7aNmFZNCJsGU0BG0oYsxoPt1pqCHvPRGp7z0kJceGnjS3B7NTbSmccFsrY9_QqGqStAicY8jhymVg8ego_W4tVj7gLbXdef_ufIDeyp9TA</recordid><startdate>20040816</startdate><enddate>20040816</enddate><creator>Bouyer, Patricia</creator><creator>Dufourd, Catherine</creator><creator>Fleury, Emmanuel</creator><creator>Petit, Antoine</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7010-1072</orcidid><orcidid>https://orcid.org/0000-0002-2823-0911</orcidid></search><sort><creationdate>20040816</creationdate><title>Updatable timed automata</title><author>Bouyer, Patricia ; Dufourd, Catherine ; Fleury, Emmanuel ; Petit, Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-c7fc4ed4391d026a2358c90e65273f3a3ff1a8592f1acec269f709afbe05fb123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Automata. Abstract machines. Turing machines</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>General logic</topic><topic>Logic and foundations</topic><topic>Mathematical logic, foundations, set theory</topic><topic>Mathematics</topic><topic>Other</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouyer, Patricia</creatorcontrib><creatorcontrib>Dufourd, Catherine</creatorcontrib><creatorcontrib>Fleury, Emmanuel</creatorcontrib><creatorcontrib>Petit, Antoine</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouyer, Patricia</au><au>Dufourd, Catherine</au><au>Fleury, Emmanuel</au><au>Petit, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Updatable timed automata</atitle><jtitle>Theoretical computer science</jtitle><date>2004-08-16</date><risdate>2004</risdate><volume>321</volume><issue>2</issue><spage>291</spage><epage>345</epage><pages>291-345</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>We investigate extensions of Alur and Dill's timed automata, based on the possibility to update the clocks in a more elaborate way than simply reset them to zero. We call these automata updatable timed automata. They form an undecidable class of models, in the sense that emptiness checking is not decidable. However, using an extension of the region graph construction, we exhibit interesting decidable subclasses. In a surprising way, decidability depends on the nature of the clock constraints which are used, diagonal-free or not, whereas these constraints play identical roles in timed automata. We thus describe in a quite precise way the thin frontier between decidable and undecidable classes of updatable timed automata. We also study the expressive power of updatable timed automata. It turns out that any updatable automaton belonging to some decidable subclass can be effectively transformed into an equivalent timed automaton without updates but with silent transitions. The transformation suffers from an enormous combinatorics blow-up which seems unavoidable. Therefore, updatable timed automata appear to be a concise model for representing and analyzing large classes of timed systems.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2004.04.003</doi><tpages>55</tpages><orcidid>https://orcid.org/0000-0002-7010-1072</orcidid><orcidid>https://orcid.org/0000-0002-2823-0911</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2004-08, Vol.321 (2), p.291-345
issn 0304-3975
1879-2294
language eng
recordid cdi_hal_primary_oai_HAL_hal_00350196v1
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Applied sciences
Automata. Abstract machines. Turing machines
Combinatorics
Combinatorics. Ordered structures
Computer Science
Computer science
control theory
systems
Exact sciences and technology
General logic
Logic and foundations
Mathematical logic, foundations, set theory
Mathematics
Other
Sciences and techniques of general use
Theoretical computing
title Updatable timed automata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Updatable%20timed%20automata&rft.jtitle=Theoretical%20computer%20science&rft.au=Bouyer,%20Patricia&rft.date=2004-08-16&rft.volume=321&rft.issue=2&rft.spage=291&rft.epage=345&rft.pages=291-345&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2004.04.003&rft_dat=%3Cproquest_hal_p%3E28275700%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28275700&rft_id=info:pmid/&rft_els_id=S0304397504002658&rfr_iscdi=true