Flow Laws in Metal Foams: Compressibility and Pore Size Effects
The aim of our experimental work was to establish a simple relation between the flow parameters and the morphological parameters of metallic foam. We used foam samples made from different metals or alloys (Cu, Ni, Ni-Cr, etc) and of various thicknesses. Pore size ranged between 500 and 5000 μm. We m...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2008-06, Vol.73 (2), p.233-254 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 2 |
container_start_page | 233 |
container_title | Transport in porous media |
container_volume | 73 |
creator | Bonnet, Jean-Philippe Topin, Frederic Tadrist, Lounes |
description | The aim of our experimental work was to establish a simple relation between the flow parameters and the morphological parameters of metallic foam. We used foam samples made from different metals or alloys (Cu, Ni, Ni-Cr, etc) and of various thicknesses. Pore size ranged between 500 and 5000 μm. We measured the pressure profiles in foam samples using a specific experimental set-up of 12 pressure sensors distributed 1 cm apart along the main flow axis. The experimental loop made it possible to use indifferently water or air as working fluid. For the study of the gas (air) flow, velocities ranged roughly from 0 up to 20 m/s and for the liquid (water) flow, velocities ranged between 0 and 0.1 m/s. The measurements of the pressure gradients were performed systematically. We validated the Forchheimer flow model. The influence of the compressibility effects on permeability and inertia coefficient was emphasized. We demonstrated that the pore size Dp in itself is sufficient to describe flow laws in such high porosity material: K and
β
are respectively proportional to Dp
2
and Dp
−1
. |
doi_str_mv | 10.1007/s11242-007-9169-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00343847v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019691320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-7da60a5b4495fa9f7f0fa00cb6504f60238baa99a477ab16ad4237b797d21e2c3</originalsourceid><addsrcrecordid>eNp1kFFrFDEUhYNYcG39Ab4FRLAPo_cmmcmmL1KWrhVWLFSfw53ZRFNmJ9tktqX99WaYUkHwKZeb75ycHMbeInxEAP0pIwolqjJWBhtT1S_YAmstK2ykeskWMC2lQfmKvc75BqColmrBPq_7eM83dJ95GPg3N1LP15F2-Yyv4m6fXM6hDX0YHzgNW34Vk-PX4dHxC-9dN-YTduSpz-7N03nMfq4vfqwuq833L19X55uqUyjHSm-pAapbpUztyXjtwRNA1zY1KN-AkMuWyBhSWlOLDW2VkLrVRm8FOtHJY3Y6-_6m3u5T2FF6sJGCvTzf2GkHIJVcKn2Hhf0ws_sUbw8uj3YXcuf6ngYXD9kioGlKFQIK-u4f9CYe0lB-YoWojVSohSkUzlSXYs7J-ecECHaq387122mc6rd10bx_cqbcUe8TDV3Iz8LyNmqtpgRi5nK5Gn659DfB_83_ACOtkRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259341729</pqid></control><display><type>article</type><title>Flow Laws in Metal Foams: Compressibility and Pore Size Effects</title><source>SpringerLink Journals</source><creator>Bonnet, Jean-Philippe ; Topin, Frederic ; Tadrist, Lounes</creator><creatorcontrib>Bonnet, Jean-Philippe ; Topin, Frederic ; Tadrist, Lounes</creatorcontrib><description>The aim of our experimental work was to establish a simple relation between the flow parameters and the morphological parameters of metallic foam. We used foam samples made from different metals or alloys (Cu, Ni, Ni-Cr, etc) and of various thicknesses. Pore size ranged between 500 and 5000 μm. We measured the pressure profiles in foam samples using a specific experimental set-up of 12 pressure sensors distributed 1 cm apart along the main flow axis. The experimental loop made it possible to use indifferently water or air as working fluid. For the study of the gas (air) flow, velocities ranged roughly from 0 up to 20 m/s and for the liquid (water) flow, velocities ranged between 0 and 0.1 m/s. The measurements of the pressure gradients were performed systematically. We validated the Forchheimer flow model. The influence of the compressibility effects on permeability and inertia coefficient was emphasized. We demonstrated that the pore size Dp in itself is sufficient to describe flow laws in such high porosity material: K and
β
are respectively proportional to Dp
2
and Dp
−1
.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-007-9169-5</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applied sciences ; Chromium ; Civil Engineering ; Classical and Continuum Physics ; Compressibility effects ; Copper ; Earth and Environmental Science ; Earth Sciences ; Engineering Sciences ; Exact sciences and technology ; Foamed metals ; Foams ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Laws ; Mathematical models ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanics ; Metal foams ; Metals. Metallurgy ; Nickel ; Nickel base alloys ; Parameters ; Pore size ; Porosity ; Pressure gradients ; Pressure sensors ; Size effects ; Stress concentration ; Thermics ; Working fluids</subject><ispartof>Transport in porous media, 2008-06, Vol.73 (2), p.233-254</ispartof><rights>Springer Science+Business Media B.V. 2007</rights><rights>2008 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (2007). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-7da60a5b4495fa9f7f0fa00cb6504f60238baa99a477ab16ad4237b797d21e2c3</citedby><cites>FETCH-LOGICAL-c413t-7da60a5b4495fa9f7f0fa00cb6504f60238baa99a477ab16ad4237b797d21e2c3</cites><orcidid>0000-0001-7987-7179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-007-9169-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-007-9169-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20317740$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00343847$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonnet, Jean-Philippe</creatorcontrib><creatorcontrib>Topin, Frederic</creatorcontrib><creatorcontrib>Tadrist, Lounes</creatorcontrib><title>Flow Laws in Metal Foams: Compressibility and Pore Size Effects</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>The aim of our experimental work was to establish a simple relation between the flow parameters and the morphological parameters of metallic foam. We used foam samples made from different metals or alloys (Cu, Ni, Ni-Cr, etc) and of various thicknesses. Pore size ranged between 500 and 5000 μm. We measured the pressure profiles in foam samples using a specific experimental set-up of 12 pressure sensors distributed 1 cm apart along the main flow axis. The experimental loop made it possible to use indifferently water or air as working fluid. For the study of the gas (air) flow, velocities ranged roughly from 0 up to 20 m/s and for the liquid (water) flow, velocities ranged between 0 and 0.1 m/s. The measurements of the pressure gradients were performed systematically. We validated the Forchheimer flow model. The influence of the compressibility effects on permeability and inertia coefficient was emphasized. We demonstrated that the pore size Dp in itself is sufficient to describe flow laws in such high porosity material: K and
β
are respectively proportional to Dp
2
and Dp
−1
.</description><subject>Applied sciences</subject><subject>Chromium</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Compressibility effects</subject><subject>Copper</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Foamed metals</subject><subject>Foams</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Laws</subject><subject>Mathematical models</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanics</subject><subject>Metal foams</subject><subject>Metals. Metallurgy</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Parameters</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Pressure gradients</subject><subject>Pressure sensors</subject><subject>Size effects</subject><subject>Stress concentration</subject><subject>Thermics</subject><subject>Working fluids</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kFFrFDEUhYNYcG39Ab4FRLAPo_cmmcmmL1KWrhVWLFSfw53ZRFNmJ9tktqX99WaYUkHwKZeb75ycHMbeInxEAP0pIwolqjJWBhtT1S_YAmstK2ykeskWMC2lQfmKvc75BqColmrBPq_7eM83dJ95GPg3N1LP15F2-Yyv4m6fXM6hDX0YHzgNW34Vk-PX4dHxC-9dN-YTduSpz-7N03nMfq4vfqwuq833L19X55uqUyjHSm-pAapbpUztyXjtwRNA1zY1KN-AkMuWyBhSWlOLDW2VkLrVRm8FOtHJY3Y6-_6m3u5T2FF6sJGCvTzf2GkHIJVcKn2Hhf0ws_sUbw8uj3YXcuf6ngYXD9kioGlKFQIK-u4f9CYe0lB-YoWojVSohSkUzlSXYs7J-ecECHaq387122mc6rd10bx_cqbcUe8TDV3Iz8LyNmqtpgRi5nK5Gn659DfB_83_ACOtkRM</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Bonnet, Jean-Philippe</creator><creator>Topin, Frederic</creator><creator>Tadrist, Lounes</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7987-7179</orcidid></search><sort><creationdate>20080601</creationdate><title>Flow Laws in Metal Foams: Compressibility and Pore Size Effects</title><author>Bonnet, Jean-Philippe ; Topin, Frederic ; Tadrist, Lounes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-7da60a5b4495fa9f7f0fa00cb6504f60238baa99a477ab16ad4237b797d21e2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Chromium</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Compressibility effects</topic><topic>Copper</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Foamed metals</topic><topic>Foams</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Laws</topic><topic>Mathematical models</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanics</topic><topic>Metal foams</topic><topic>Metals. Metallurgy</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Parameters</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Pressure gradients</topic><topic>Pressure sensors</topic><topic>Size effects</topic><topic>Stress concentration</topic><topic>Thermics</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnet, Jean-Philippe</creatorcontrib><creatorcontrib>Topin, Frederic</creatorcontrib><creatorcontrib>Tadrist, Lounes</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnet, Jean-Philippe</au><au>Topin, Frederic</au><au>Tadrist, Lounes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow Laws in Metal Foams: Compressibility and Pore Size Effects</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>73</volume><issue>2</issue><spage>233</spage><epage>254</epage><pages>233-254</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>The aim of our experimental work was to establish a simple relation between the flow parameters and the morphological parameters of metallic foam. We used foam samples made from different metals or alloys (Cu, Ni, Ni-Cr, etc) and of various thicknesses. Pore size ranged between 500 and 5000 μm. We measured the pressure profiles in foam samples using a specific experimental set-up of 12 pressure sensors distributed 1 cm apart along the main flow axis. The experimental loop made it possible to use indifferently water or air as working fluid. For the study of the gas (air) flow, velocities ranged roughly from 0 up to 20 m/s and for the liquid (water) flow, velocities ranged between 0 and 0.1 m/s. The measurements of the pressure gradients were performed systematically. We validated the Forchheimer flow model. The influence of the compressibility effects on permeability and inertia coefficient was emphasized. We demonstrated that the pore size Dp in itself is sufficient to describe flow laws in such high porosity material: K and
β
are respectively proportional to Dp
2
and Dp
−1
.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-007-9169-5</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-7987-7179</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2008-06, Vol.73 (2), p.233-254 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00343847v1 |
source | SpringerLink Journals |
subjects | Applied sciences Chromium Civil Engineering Classical and Continuum Physics Compressibility effects Copper Earth and Environmental Science Earth Sciences Engineering Sciences Exact sciences and technology Foamed metals Foams Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Laws Mathematical models Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Mechanics Metal foams Metals. Metallurgy Nickel Nickel base alloys Parameters Pore size Porosity Pressure gradients Pressure sensors Size effects Stress concentration Thermics Working fluids |
title | Flow Laws in Metal Foams: Compressibility and Pore Size Effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20Laws%20in%20Metal%20Foams:%20Compressibility%20and%20Pore%20Size%20Effects&rft.jtitle=Transport%20in%20porous%20media&rft.au=Bonnet,%20Jean-Philippe&rft.date=2008-06-01&rft.volume=73&rft.issue=2&rft.spage=233&rft.epage=254&rft.pages=233-254&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1007/s11242-007-9169-5&rft_dat=%3Cproquest_hal_p%3E1019691320%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259341729&rft_id=info:pmid/&rfr_iscdi=true |