Flow Laws in Metal Foams: Compressibility and Pore Size Effects

The aim of our experimental work was to establish a simple relation between the flow parameters and the morphological parameters of metallic foam. We used foam samples made from different metals or alloys (Cu, Ni, Ni-Cr, etc) and of various thicknesses. Pore size ranged between 500 and 5000 μm. We m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2008-06, Vol.73 (2), p.233-254
Hauptverfasser: Bonnet, Jean-Philippe, Topin, Frederic, Tadrist, Lounes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 2
container_start_page 233
container_title Transport in porous media
container_volume 73
creator Bonnet, Jean-Philippe
Topin, Frederic
Tadrist, Lounes
description The aim of our experimental work was to establish a simple relation between the flow parameters and the morphological parameters of metallic foam. We used foam samples made from different metals or alloys (Cu, Ni, Ni-Cr, etc) and of various thicknesses. Pore size ranged between 500 and 5000 μm. We measured the pressure profiles in foam samples using a specific experimental set-up of 12 pressure sensors distributed 1 cm apart along the main flow axis. The experimental loop made it possible to use indifferently water or air as working fluid. For the study of the gas (air) flow, velocities ranged roughly from 0 up to 20 m/s and for the liquid (water) flow, velocities ranged between 0 and 0.1 m/s. The measurements of the pressure gradients were performed systematically. We validated the Forchheimer flow model. The influence of the compressibility effects on permeability and inertia coefficient was emphasized. We demonstrated that the pore size Dp in itself is sufficient to describe flow laws in such high porosity material: K and β are respectively proportional to Dp 2 and Dp −1 .
doi_str_mv 10.1007/s11242-007-9169-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00343847v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019691320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-7da60a5b4495fa9f7f0fa00cb6504f60238baa99a477ab16ad4237b797d21e2c3</originalsourceid><addsrcrecordid>eNp1kFFrFDEUhYNYcG39Ab4FRLAPo_cmmcmmL1KWrhVWLFSfw53ZRFNmJ9tktqX99WaYUkHwKZeb75ycHMbeInxEAP0pIwolqjJWBhtT1S_YAmstK2ykeskWMC2lQfmKvc75BqColmrBPq_7eM83dJ95GPg3N1LP15F2-Yyv4m6fXM6hDX0YHzgNW34Vk-PX4dHxC-9dN-YTduSpz-7N03nMfq4vfqwuq833L19X55uqUyjHSm-pAapbpUztyXjtwRNA1zY1KN-AkMuWyBhSWlOLDW2VkLrVRm8FOtHJY3Y6-_6m3u5T2FF6sJGCvTzf2GkHIJVcKn2Hhf0ws_sUbw8uj3YXcuf6ngYXD9kioGlKFQIK-u4f9CYe0lB-YoWojVSohSkUzlSXYs7J-ecECHaq387122mc6rd10bx_cqbcUe8TDV3Iz8LyNmqtpgRi5nK5Gn659DfB_83_ACOtkRM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259341729</pqid></control><display><type>article</type><title>Flow Laws in Metal Foams: Compressibility and Pore Size Effects</title><source>SpringerLink Journals</source><creator>Bonnet, Jean-Philippe ; Topin, Frederic ; Tadrist, Lounes</creator><creatorcontrib>Bonnet, Jean-Philippe ; Topin, Frederic ; Tadrist, Lounes</creatorcontrib><description>The aim of our experimental work was to establish a simple relation between the flow parameters and the morphological parameters of metallic foam. We used foam samples made from different metals or alloys (Cu, Ni, Ni-Cr, etc) and of various thicknesses. Pore size ranged between 500 and 5000 μm. We measured the pressure profiles in foam samples using a specific experimental set-up of 12 pressure sensors distributed 1 cm apart along the main flow axis. The experimental loop made it possible to use indifferently water or air as working fluid. For the study of the gas (air) flow, velocities ranged roughly from 0 up to 20 m/s and for the liquid (water) flow, velocities ranged between 0 and 0.1 m/s. The measurements of the pressure gradients were performed systematically. We validated the Forchheimer flow model. The influence of the compressibility effects on permeability and inertia coefficient was emphasized. We demonstrated that the pore size Dp in itself is sufficient to describe flow laws in such high porosity material: K and β are respectively proportional to Dp 2 and Dp −1 .</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-007-9169-5</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applied sciences ; Chromium ; Civil Engineering ; Classical and Continuum Physics ; Compressibility effects ; Copper ; Earth and Environmental Science ; Earth Sciences ; Engineering Sciences ; Exact sciences and technology ; Foamed metals ; Foams ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Laws ; Mathematical models ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanics ; Metal foams ; Metals. Metallurgy ; Nickel ; Nickel base alloys ; Parameters ; Pore size ; Porosity ; Pressure gradients ; Pressure sensors ; Size effects ; Stress concentration ; Thermics ; Working fluids</subject><ispartof>Transport in porous media, 2008-06, Vol.73 (2), p.233-254</ispartof><rights>Springer Science+Business Media B.V. 2007</rights><rights>2008 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (2007). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-7da60a5b4495fa9f7f0fa00cb6504f60238baa99a477ab16ad4237b797d21e2c3</citedby><cites>FETCH-LOGICAL-c413t-7da60a5b4495fa9f7f0fa00cb6504f60238baa99a477ab16ad4237b797d21e2c3</cites><orcidid>0000-0001-7987-7179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-007-9169-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-007-9169-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20317740$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00343847$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonnet, Jean-Philippe</creatorcontrib><creatorcontrib>Topin, Frederic</creatorcontrib><creatorcontrib>Tadrist, Lounes</creatorcontrib><title>Flow Laws in Metal Foams: Compressibility and Pore Size Effects</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>The aim of our experimental work was to establish a simple relation between the flow parameters and the morphological parameters of metallic foam. We used foam samples made from different metals or alloys (Cu, Ni, Ni-Cr, etc) and of various thicknesses. Pore size ranged between 500 and 5000 μm. We measured the pressure profiles in foam samples using a specific experimental set-up of 12 pressure sensors distributed 1 cm apart along the main flow axis. The experimental loop made it possible to use indifferently water or air as working fluid. For the study of the gas (air) flow, velocities ranged roughly from 0 up to 20 m/s and for the liquid (water) flow, velocities ranged between 0 and 0.1 m/s. The measurements of the pressure gradients were performed systematically. We validated the Forchheimer flow model. The influence of the compressibility effects on permeability and inertia coefficient was emphasized. We demonstrated that the pore size Dp in itself is sufficient to describe flow laws in such high porosity material: K and β are respectively proportional to Dp 2 and Dp −1 .</description><subject>Applied sciences</subject><subject>Chromium</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Compressibility effects</subject><subject>Copper</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Foamed metals</subject><subject>Foams</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Laws</subject><subject>Mathematical models</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanics</subject><subject>Metal foams</subject><subject>Metals. Metallurgy</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Parameters</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Pressure gradients</subject><subject>Pressure sensors</subject><subject>Size effects</subject><subject>Stress concentration</subject><subject>Thermics</subject><subject>Working fluids</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kFFrFDEUhYNYcG39Ab4FRLAPo_cmmcmmL1KWrhVWLFSfw53ZRFNmJ9tktqX99WaYUkHwKZeb75ycHMbeInxEAP0pIwolqjJWBhtT1S_YAmstK2ykeskWMC2lQfmKvc75BqColmrBPq_7eM83dJ95GPg3N1LP15F2-Yyv4m6fXM6hDX0YHzgNW34Vk-PX4dHxC-9dN-YTduSpz-7N03nMfq4vfqwuq833L19X55uqUyjHSm-pAapbpUztyXjtwRNA1zY1KN-AkMuWyBhSWlOLDW2VkLrVRm8FOtHJY3Y6-_6m3u5T2FF6sJGCvTzf2GkHIJVcKn2Hhf0ws_sUbw8uj3YXcuf6ngYXD9kioGlKFQIK-u4f9CYe0lB-YoWojVSohSkUzlSXYs7J-ecECHaq387122mc6rd10bx_cqbcUe8TDV3Iz8LyNmqtpgRi5nK5Gn659DfB_83_ACOtkRM</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Bonnet, Jean-Philippe</creator><creator>Topin, Frederic</creator><creator>Tadrist, Lounes</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7987-7179</orcidid></search><sort><creationdate>20080601</creationdate><title>Flow Laws in Metal Foams: Compressibility and Pore Size Effects</title><author>Bonnet, Jean-Philippe ; Topin, Frederic ; Tadrist, Lounes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-7da60a5b4495fa9f7f0fa00cb6504f60238baa99a477ab16ad4237b797d21e2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Chromium</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Compressibility effects</topic><topic>Copper</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Foamed metals</topic><topic>Foams</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Laws</topic><topic>Mathematical models</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanics</topic><topic>Metal foams</topic><topic>Metals. Metallurgy</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Parameters</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Pressure gradients</topic><topic>Pressure sensors</topic><topic>Size effects</topic><topic>Stress concentration</topic><topic>Thermics</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnet, Jean-Philippe</creatorcontrib><creatorcontrib>Topin, Frederic</creatorcontrib><creatorcontrib>Tadrist, Lounes</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnet, Jean-Philippe</au><au>Topin, Frederic</au><au>Tadrist, Lounes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow Laws in Metal Foams: Compressibility and Pore Size Effects</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>73</volume><issue>2</issue><spage>233</spage><epage>254</epage><pages>233-254</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>The aim of our experimental work was to establish a simple relation between the flow parameters and the morphological parameters of metallic foam. We used foam samples made from different metals or alloys (Cu, Ni, Ni-Cr, etc) and of various thicknesses. Pore size ranged between 500 and 5000 μm. We measured the pressure profiles in foam samples using a specific experimental set-up of 12 pressure sensors distributed 1 cm apart along the main flow axis. The experimental loop made it possible to use indifferently water or air as working fluid. For the study of the gas (air) flow, velocities ranged roughly from 0 up to 20 m/s and for the liquid (water) flow, velocities ranged between 0 and 0.1 m/s. The measurements of the pressure gradients were performed systematically. We validated the Forchheimer flow model. The influence of the compressibility effects on permeability and inertia coefficient was emphasized. We demonstrated that the pore size Dp in itself is sufficient to describe flow laws in such high porosity material: K and β are respectively proportional to Dp 2 and Dp −1 .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-007-9169-5</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-7987-7179</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2008-06, Vol.73 (2), p.233-254
issn 0169-3913
1573-1634
language eng
recordid cdi_hal_primary_oai_HAL_hal_00343847v1
source SpringerLink Journals
subjects Applied sciences
Chromium
Civil Engineering
Classical and Continuum Physics
Compressibility effects
Copper
Earth and Environmental Science
Earth Sciences
Engineering Sciences
Exact sciences and technology
Foamed metals
Foams
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Laws
Mathematical models
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Mechanics
Metal foams
Metals. Metallurgy
Nickel
Nickel base alloys
Parameters
Pore size
Porosity
Pressure gradients
Pressure sensors
Size effects
Stress concentration
Thermics
Working fluids
title Flow Laws in Metal Foams: Compressibility and Pore Size Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20Laws%20in%20Metal%20Foams:%20Compressibility%20and%20Pore%20Size%20Effects&rft.jtitle=Transport%20in%20porous%20media&rft.au=Bonnet,%20Jean-Philippe&rft.date=2008-06-01&rft.volume=73&rft.issue=2&rft.spage=233&rft.epage=254&rft.pages=233-254&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1007/s11242-007-9169-5&rft_dat=%3Cproquest_hal_p%3E1019691320%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259341729&rft_id=info:pmid/&rfr_iscdi=true