An Institution-Independent Proof of the Beth Definability Theorem

A few results generalising well-known conventional model theory ones have been obtained in the framework of institutions these last two decades (for instance Craig interpolation, ultraproduct, elementary diagrams). In this paper, we propose a generalised institution-independent version of the Beth d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studia logica 2005
Hauptverfasser: Aiguier, Marc, Barbier, Fabrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Studia logica
container_volume
creator Aiguier, Marc
Barbier, Fabrice
description A few results generalising well-known conventional model theory ones have been obtained in the framework of institutions these last two decades (for instance Craig interpolation, ultraproduct, elementary diagrams). In this paper, we propose a generalised institution-independent version of the Beth definability theorem.
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00341967v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00341967v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_00341967v13</originalsourceid><addsrcrecordid>eNqVjssKwjAURIMoWB__kK2LQNLY1izriwouXHQfIt6SSJuUJAr9eyv4A8IwB4azmAlKWFakZFdwOkUJpVwQnrJsjhYhPCmlaS5EgsrS4osN0cRXNM6Si31AD2PZiG_euQaPiRrwHqLGR2iMVXfTmjjgWoPz0K3QrFFtgPWPS7Q5n-pDRbRqZe9Np_wgnTKyKq_yu41XtkzkxZvxf9wPJw0-SQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Institution-Independent Proof of the Beth Definability Theorem</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Aiguier, Marc ; Barbier, Fabrice</creator><creatorcontrib>Aiguier, Marc ; Barbier, Fabrice</creatorcontrib><description>A few results generalising well-known conventional model theory ones have been obtained in the framework of institutions these last two decades (for instance Craig interpolation, ultraproduct, elementary diagrams). In this paper, we propose a generalised institution-independent version of the Beth definability theorem.</description><identifier>ISSN: 0039-3215</identifier><identifier>EISSN: 1572-8730</identifier><language>eng</language><publisher>Springer Verlag (Germany)</publisher><subject>Computer Science ; Multiagent Systems ; Programming Languages ; Software Engineering ; Web</subject><ispartof>Studia logica, 2005</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0154-0909 ; 0000-0003-0154-0909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,4010</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00341967$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aiguier, Marc</creatorcontrib><creatorcontrib>Barbier, Fabrice</creatorcontrib><title>An Institution-Independent Proof of the Beth Definability Theorem</title><title>Studia logica</title><description>A few results generalising well-known conventional model theory ones have been obtained in the framework of institutions these last two decades (for instance Craig interpolation, ultraproduct, elementary diagrams). In this paper, we propose a generalised institution-independent version of the Beth definability theorem.</description><subject>Computer Science</subject><subject>Multiagent Systems</subject><subject>Programming Languages</subject><subject>Software Engineering</subject><subject>Web</subject><issn>0039-3215</issn><issn>1572-8730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqVjssKwjAURIMoWB__kK2LQNLY1izriwouXHQfIt6SSJuUJAr9eyv4A8IwB4azmAlKWFakZFdwOkUJpVwQnrJsjhYhPCmlaS5EgsrS4osN0cRXNM6Si31AD2PZiG_euQaPiRrwHqLGR2iMVXfTmjjgWoPz0K3QrFFtgPWPS7Q5n-pDRbRqZe9Np_wgnTKyKq_yu41XtkzkxZvxf9wPJw0-SQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Aiguier, Marc</creator><creator>Barbier, Fabrice</creator><general>Springer Verlag (Germany)</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0154-0909</orcidid><orcidid>https://orcid.org/0000-0003-0154-0909</orcidid></search><sort><creationdate>2005</creationdate><title>An Institution-Independent Proof of the Beth Definability Theorem</title><author>Aiguier, Marc ; Barbier, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_00341967v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer Science</topic><topic>Multiagent Systems</topic><topic>Programming Languages</topic><topic>Software Engineering</topic><topic>Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aiguier, Marc</creatorcontrib><creatorcontrib>Barbier, Fabrice</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Studia logica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aiguier, Marc</au><au>Barbier, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Institution-Independent Proof of the Beth Definability Theorem</atitle><jtitle>Studia logica</jtitle><date>2005</date><risdate>2005</risdate><issn>0039-3215</issn><eissn>1572-8730</eissn><abstract>A few results generalising well-known conventional model theory ones have been obtained in the framework of institutions these last two decades (for instance Craig interpolation, ultraproduct, elementary diagrams). In this paper, we propose a generalised institution-independent version of the Beth definability theorem.</abstract><pub>Springer Verlag (Germany)</pub><orcidid>https://orcid.org/0000-0003-0154-0909</orcidid><orcidid>https://orcid.org/0000-0003-0154-0909</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0039-3215
ispartof Studia logica, 2005
issn 0039-3215
1572-8730
language eng
recordid cdi_hal_primary_oai_HAL_hal_00341967v1
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects Computer Science
Multiagent Systems
Programming Languages
Software Engineering
Web
title An Institution-Independent Proof of the Beth Definability Theorem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Institution-Independent%20Proof%20of%20the%20Beth%20Definability%20Theorem&rft.jtitle=Studia%20logica&rft.au=Aiguier,%20Marc&rft.date=2005&rft.issn=0039-3215&rft.eissn=1572-8730&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_00341967v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true