The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway

In Desulfovibrio metabolism, periplasmic hydrogen oxidation is coupled to cytoplasmic sulfate reduction via transmembrane electron transfer complexes. Type II tetraheme cytochrome c3 (TpII-c3), nine-heme cytochrome c (9HcA) and 16-heme cytochrome c (HmcA) are periplasmic proteins associated to these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2005-11, Vol.354 (1), p.73-90
Hauptverfasser: Pieulle, Laetitia, Morelli, Xavier, Gallice, Philippe, Lojou, Elisabeth, Barbier, Pascale, Czjzek, Mirjam, Bianco, Pierre, Guerlesquin, Françoise, Hatchikian, E Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 1
container_start_page 73
container_title Journal of molecular biology
container_volume 354
creator Pieulle, Laetitia
Morelli, Xavier
Gallice, Philippe
Lojou, Elisabeth
Barbier, Pascale
Czjzek, Mirjam
Bianco, Pierre
Guerlesquin, Françoise
Hatchikian, E Claude
description In Desulfovibrio metabolism, periplasmic hydrogen oxidation is coupled to cytoplasmic sulfate reduction via transmembrane electron transfer complexes. Type II tetraheme cytochrome c3 (TpII-c3), nine-heme cytochrome c (9HcA) and 16-heme cytochrome c (HmcA) are periplasmic proteins associated to these membrane-bound redox complexes and exhibit analogous physiological function. Type I tetraheme cytochrome c3 (TpI-c3) is thought to act as a mediator for electron transfer from hydrogenase to these multihemic cytochromes. In the present work we have investigated Desulfovibrio africanus (Da) and Desulfovibrio vulgaris Hildenborough (DvH) TpI-c3/TpII-c3 complexes. Comparative kinetic experiments of Da TpI-c3 and TpII-c3 using electrochemistry confirm that TpI-c3 is much more efficient than TpII-c3 as an electron acceptor from hydrogenase (second order rate constant k = 9 x 10(8) M(-1) s(-1), K(m) = 0.5 microM as compared to k = 1.7 x 10(7) M(-1) s(-1), K(m) = 40 microM, for TpI-c3 and TpII-c3, respectively). The Da TpI-c3/TpII-c3 complex was characterized at low ionic strength by gel filtration, analytical ultracentrifugation and cross-linking experiments. The thermodynamic parameters were determined by isothermal calorimetry titrations. The formation of the complex is mainly driven by a positive entropy change (deltaS = 137(+/-7) J mol(-1) K(-1) and deltaH = 5.1(+/-1.3) kJ mol(-1)) and the value for the association constant is found to be (2.2(+/-0.5)) x 10(6) M(-1) at pH 5.5. Our thermodynamic results reveal that the net increase in enthalpy and entropy is dominantly produced by proton release in combination with water molecule exclusion. Electrostatic forces play an important role in stabilizing the complex between the two proteins, since no complex formation is detected at high ionic strength. The crystal structure of Da TpI-c3 has been solved at 1.5 angstroms resolution and structural models of the complex have been obtained by NMR and docking experiments. Similar experiments have been carried out on the DvH TpI-c3/TpII-c3 complex. In both complexes, heme IV of TpI-c3 faces heme I of TpII-c3 involving basic residues of TpI-c3 and acidic residues of TpII-c3. A secondary interacting site has been observed in the two complexes, involving heme II of Da TpII-c3 and heme III of DvH TpI-c3 giving rise to a TpI-c3/TpII-c3 molar ratio of 2:1 and 1:2 for Da and DvH complexes, respectively. The physiological significance of these alternative sites in multiheme cytochrom
doi_str_mv 10.1016/j.jmb.2005.09.036
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00335428v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68739327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-4155b98b8dc6705b16da31f91363ec91fa1111ba395fa373a8784a85d9c64e533</originalsourceid><addsrcrecordid>eNpFkcFu1DAURS0EokPbD2CDvEJikdTOSxybXVUBHWkkNu3acpwXkiGJg-0A-ft6NCN4mys9nXs3h5D3nOWccXF3zI9TkxeMVTlTOQPxiuw4kyqTAuRrsmOsKLJCgrgi70I4sgRCKd-SKy6KQtSi3pHpqUcatwXp_u4ce2q36Gzv3YTUArVuWkb8-5mameKINno30-jNHDr0dBzmn3RIjzTTb613P3DOwjp2JiL12K42DolfTOz_mO2GvOnMGPD2ktfk-euXp4fH7PD92_7h_pBZ4GXMSl5VjZKNbK2oWdVw0RrgneIgAK3ineHpGgOq6gzUYGQtSyOrVllRYgVwTT6dd3sz6sUPk_GbdmbQj_cHffoxBlCVhfzNE_vxzC7e_VoxRD0NweI4mhndGrSQNSgo6gTyM2i9C8Fj92-ZM33yoY86-dAnH5opnXykzofL-NpM2P5vXATAC5vWhoU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68739327</pqid></control><display><type>article</type><title>The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pieulle, Laetitia ; Morelli, Xavier ; Gallice, Philippe ; Lojou, Elisabeth ; Barbier, Pascale ; Czjzek, Mirjam ; Bianco, Pierre ; Guerlesquin, Françoise ; Hatchikian, E Claude</creator><creatorcontrib>Pieulle, Laetitia ; Morelli, Xavier ; Gallice, Philippe ; Lojou, Elisabeth ; Barbier, Pascale ; Czjzek, Mirjam ; Bianco, Pierre ; Guerlesquin, Françoise ; Hatchikian, E Claude</creatorcontrib><description>In Desulfovibrio metabolism, periplasmic hydrogen oxidation is coupled to cytoplasmic sulfate reduction via transmembrane electron transfer complexes. Type II tetraheme cytochrome c3 (TpII-c3), nine-heme cytochrome c (9HcA) and 16-heme cytochrome c (HmcA) are periplasmic proteins associated to these membrane-bound redox complexes and exhibit analogous physiological function. Type I tetraheme cytochrome c3 (TpI-c3) is thought to act as a mediator for electron transfer from hydrogenase to these multihemic cytochromes. In the present work we have investigated Desulfovibrio africanus (Da) and Desulfovibrio vulgaris Hildenborough (DvH) TpI-c3/TpII-c3 complexes. Comparative kinetic experiments of Da TpI-c3 and TpII-c3 using electrochemistry confirm that TpI-c3 is much more efficient than TpII-c3 as an electron acceptor from hydrogenase (second order rate constant k = 9 x 10(8) M(-1) s(-1), K(m) = 0.5 microM as compared to k = 1.7 x 10(7) M(-1) s(-1), K(m) = 40 microM, for TpI-c3 and TpII-c3, respectively). The Da TpI-c3/TpII-c3 complex was characterized at low ionic strength by gel filtration, analytical ultracentrifugation and cross-linking experiments. The thermodynamic parameters were determined by isothermal calorimetry titrations. The formation of the complex is mainly driven by a positive entropy change (deltaS = 137(+/-7) J mol(-1) K(-1) and deltaH = 5.1(+/-1.3) kJ mol(-1)) and the value for the association constant is found to be (2.2(+/-0.5)) x 10(6) M(-1) at pH 5.5. Our thermodynamic results reveal that the net increase in enthalpy and entropy is dominantly produced by proton release in combination with water molecule exclusion. Electrostatic forces play an important role in stabilizing the complex between the two proteins, since no complex formation is detected at high ionic strength. The crystal structure of Da TpI-c3 has been solved at 1.5 angstroms resolution and structural models of the complex have been obtained by NMR and docking experiments. Similar experiments have been carried out on the DvH TpI-c3/TpII-c3 complex. In both complexes, heme IV of TpI-c3 faces heme I of TpII-c3 involving basic residues of TpI-c3 and acidic residues of TpII-c3. A secondary interacting site has been observed in the two complexes, involving heme II of Da TpII-c3 and heme III of DvH TpI-c3 giving rise to a TpI-c3/TpII-c3 molar ratio of 2:1 and 1:2 for Da and DvH complexes, respectively. The physiological significance of these alternative sites in multiheme cytochromes c is discussed.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2005.09.036</identifier><identifier>PMID: 16226767</identifier><language>eng</language><publisher>England: Elsevier</publisher><subject>Cytochrome c Group - chemistry ; Cytochrome c Group - metabolism ; Desulfovibrio africanus - enzymology ; Desulfovibrio africanus - metabolism ; Desulfovibrio vulgaris - enzymology ; Desulfovibrio vulgaris - metabolism ; Electron Transport - physiology ; Entropy ; Hydrogenase - metabolism ; Kinetics ; Magnetic Resonance Imaging ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Interaction Mapping ; Thermodynamics</subject><ispartof>Journal of molecular biology, 2005-11, Vol.354 (1), p.73-90</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-4155b98b8dc6705b16da31f91363ec91fa1111ba395fa373a8784a85d9c64e533</citedby><cites>FETCH-LOGICAL-c314t-4155b98b8dc6705b16da31f91363ec91fa1111ba395fa373a8784a85d9c64e533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16226767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00335428$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pieulle, Laetitia</creatorcontrib><creatorcontrib>Morelli, Xavier</creatorcontrib><creatorcontrib>Gallice, Philippe</creatorcontrib><creatorcontrib>Lojou, Elisabeth</creatorcontrib><creatorcontrib>Barbier, Pascale</creatorcontrib><creatorcontrib>Czjzek, Mirjam</creatorcontrib><creatorcontrib>Bianco, Pierre</creatorcontrib><creatorcontrib>Guerlesquin, Françoise</creatorcontrib><creatorcontrib>Hatchikian, E Claude</creatorcontrib><title>The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>In Desulfovibrio metabolism, periplasmic hydrogen oxidation is coupled to cytoplasmic sulfate reduction via transmembrane electron transfer complexes. Type II tetraheme cytochrome c3 (TpII-c3), nine-heme cytochrome c (9HcA) and 16-heme cytochrome c (HmcA) are periplasmic proteins associated to these membrane-bound redox complexes and exhibit analogous physiological function. Type I tetraheme cytochrome c3 (TpI-c3) is thought to act as a mediator for electron transfer from hydrogenase to these multihemic cytochromes. In the present work we have investigated Desulfovibrio africanus (Da) and Desulfovibrio vulgaris Hildenborough (DvH) TpI-c3/TpII-c3 complexes. Comparative kinetic experiments of Da TpI-c3 and TpII-c3 using electrochemistry confirm that TpI-c3 is much more efficient than TpII-c3 as an electron acceptor from hydrogenase (second order rate constant k = 9 x 10(8) M(-1) s(-1), K(m) = 0.5 microM as compared to k = 1.7 x 10(7) M(-1) s(-1), K(m) = 40 microM, for TpI-c3 and TpII-c3, respectively). The Da TpI-c3/TpII-c3 complex was characterized at low ionic strength by gel filtration, analytical ultracentrifugation and cross-linking experiments. The thermodynamic parameters were determined by isothermal calorimetry titrations. The formation of the complex is mainly driven by a positive entropy change (deltaS = 137(+/-7) J mol(-1) K(-1) and deltaH = 5.1(+/-1.3) kJ mol(-1)) and the value for the association constant is found to be (2.2(+/-0.5)) x 10(6) M(-1) at pH 5.5. Our thermodynamic results reveal that the net increase in enthalpy and entropy is dominantly produced by proton release in combination with water molecule exclusion. Electrostatic forces play an important role in stabilizing the complex between the two proteins, since no complex formation is detected at high ionic strength. The crystal structure of Da TpI-c3 has been solved at 1.5 angstroms resolution and structural models of the complex have been obtained by NMR and docking experiments. Similar experiments have been carried out on the DvH TpI-c3/TpII-c3 complex. In both complexes, heme IV of TpI-c3 faces heme I of TpII-c3 involving basic residues of TpI-c3 and acidic residues of TpII-c3. A secondary interacting site has been observed in the two complexes, involving heme II of Da TpII-c3 and heme III of DvH TpI-c3 giving rise to a TpI-c3/TpII-c3 molar ratio of 2:1 and 1:2 for Da and DvH complexes, respectively. The physiological significance of these alternative sites in multiheme cytochromes c is discussed.</description><subject>Cytochrome c Group - chemistry</subject><subject>Cytochrome c Group - metabolism</subject><subject>Desulfovibrio africanus - enzymology</subject><subject>Desulfovibrio africanus - metabolism</subject><subject>Desulfovibrio vulgaris - enzymology</subject><subject>Desulfovibrio vulgaris - metabolism</subject><subject>Electron Transport - physiology</subject><subject>Entropy</subject><subject>Hydrogenase - metabolism</subject><subject>Kinetics</subject><subject>Magnetic Resonance Imaging</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Interaction Mapping</subject><subject>Thermodynamics</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkcFu1DAURS0EokPbD2CDvEJikdTOSxybXVUBHWkkNu3acpwXkiGJg-0A-ft6NCN4mys9nXs3h5D3nOWccXF3zI9TkxeMVTlTOQPxiuw4kyqTAuRrsmOsKLJCgrgi70I4sgRCKd-SKy6KQtSi3pHpqUcatwXp_u4ce2q36Gzv3YTUArVuWkb8-5mameKINno30-jNHDr0dBzmn3RIjzTTb613P3DOwjp2JiL12K42DolfTOz_mO2GvOnMGPD2ktfk-euXp4fH7PD92_7h_pBZ4GXMSl5VjZKNbK2oWdVw0RrgneIgAK3ineHpGgOq6gzUYGQtSyOrVllRYgVwTT6dd3sz6sUPk_GbdmbQj_cHffoxBlCVhfzNE_vxzC7e_VoxRD0NweI4mhndGrSQNSgo6gTyM2i9C8Fj92-ZM33yoY86-dAnH5opnXykzofL-NpM2P5vXATAC5vWhoU</recordid><startdate>20051118</startdate><enddate>20051118</enddate><creator>Pieulle, Laetitia</creator><creator>Morelli, Xavier</creator><creator>Gallice, Philippe</creator><creator>Lojou, Elisabeth</creator><creator>Barbier, Pascale</creator><creator>Czjzek, Mirjam</creator><creator>Bianco, Pierre</creator><creator>Guerlesquin, Françoise</creator><creator>Hatchikian, E Claude</creator><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20051118</creationdate><title>The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway</title><author>Pieulle, Laetitia ; Morelli, Xavier ; Gallice, Philippe ; Lojou, Elisabeth ; Barbier, Pascale ; Czjzek, Mirjam ; Bianco, Pierre ; Guerlesquin, Françoise ; Hatchikian, E Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-4155b98b8dc6705b16da31f91363ec91fa1111ba395fa373a8784a85d9c64e533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cytochrome c Group - chemistry</topic><topic>Cytochrome c Group - metabolism</topic><topic>Desulfovibrio africanus - enzymology</topic><topic>Desulfovibrio africanus - metabolism</topic><topic>Desulfovibrio vulgaris - enzymology</topic><topic>Desulfovibrio vulgaris - metabolism</topic><topic>Electron Transport - physiology</topic><topic>Entropy</topic><topic>Hydrogenase - metabolism</topic><topic>Kinetics</topic><topic>Magnetic Resonance Imaging</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Interaction Mapping</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pieulle, Laetitia</creatorcontrib><creatorcontrib>Morelli, Xavier</creatorcontrib><creatorcontrib>Gallice, Philippe</creatorcontrib><creatorcontrib>Lojou, Elisabeth</creatorcontrib><creatorcontrib>Barbier, Pascale</creatorcontrib><creatorcontrib>Czjzek, Mirjam</creatorcontrib><creatorcontrib>Bianco, Pierre</creatorcontrib><creatorcontrib>Guerlesquin, Françoise</creatorcontrib><creatorcontrib>Hatchikian, E Claude</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pieulle, Laetitia</au><au>Morelli, Xavier</au><au>Gallice, Philippe</au><au>Lojou, Elisabeth</au><au>Barbier, Pascale</au><au>Czjzek, Mirjam</au><au>Bianco, Pierre</au><au>Guerlesquin, Françoise</au><au>Hatchikian, E Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2005-11-18</date><risdate>2005</risdate><volume>354</volume><issue>1</issue><spage>73</spage><epage>90</epage><pages>73-90</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>In Desulfovibrio metabolism, periplasmic hydrogen oxidation is coupled to cytoplasmic sulfate reduction via transmembrane electron transfer complexes. Type II tetraheme cytochrome c3 (TpII-c3), nine-heme cytochrome c (9HcA) and 16-heme cytochrome c (HmcA) are periplasmic proteins associated to these membrane-bound redox complexes and exhibit analogous physiological function. Type I tetraheme cytochrome c3 (TpI-c3) is thought to act as a mediator for electron transfer from hydrogenase to these multihemic cytochromes. In the present work we have investigated Desulfovibrio africanus (Da) and Desulfovibrio vulgaris Hildenborough (DvH) TpI-c3/TpII-c3 complexes. Comparative kinetic experiments of Da TpI-c3 and TpII-c3 using electrochemistry confirm that TpI-c3 is much more efficient than TpII-c3 as an electron acceptor from hydrogenase (second order rate constant k = 9 x 10(8) M(-1) s(-1), K(m) = 0.5 microM as compared to k = 1.7 x 10(7) M(-1) s(-1), K(m) = 40 microM, for TpI-c3 and TpII-c3, respectively). The Da TpI-c3/TpII-c3 complex was characterized at low ionic strength by gel filtration, analytical ultracentrifugation and cross-linking experiments. The thermodynamic parameters were determined by isothermal calorimetry titrations. The formation of the complex is mainly driven by a positive entropy change (deltaS = 137(+/-7) J mol(-1) K(-1) and deltaH = 5.1(+/-1.3) kJ mol(-1)) and the value for the association constant is found to be (2.2(+/-0.5)) x 10(6) M(-1) at pH 5.5. Our thermodynamic results reveal that the net increase in enthalpy and entropy is dominantly produced by proton release in combination with water molecule exclusion. Electrostatic forces play an important role in stabilizing the complex between the two proteins, since no complex formation is detected at high ionic strength. The crystal structure of Da TpI-c3 has been solved at 1.5 angstroms resolution and structural models of the complex have been obtained by NMR and docking experiments. Similar experiments have been carried out on the DvH TpI-c3/TpII-c3 complex. In both complexes, heme IV of TpI-c3 faces heme I of TpII-c3 involving basic residues of TpI-c3 and acidic residues of TpII-c3. A secondary interacting site has been observed in the two complexes, involving heme II of Da TpII-c3 and heme III of DvH TpI-c3 giving rise to a TpI-c3/TpII-c3 molar ratio of 2:1 and 1:2 for Da and DvH complexes, respectively. The physiological significance of these alternative sites in multiheme cytochromes c is discussed.</abstract><cop>England</cop><pub>Elsevier</pub><pmid>16226767</pmid><doi>10.1016/j.jmb.2005.09.036</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2005-11, Vol.354 (1), p.73-90
issn 0022-2836
1089-8638
language eng
recordid cdi_hal_primary_oai_HAL_hal_00335428v1
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Cytochrome c Group - chemistry
Cytochrome c Group - metabolism
Desulfovibrio africanus - enzymology
Desulfovibrio africanus - metabolism
Desulfovibrio vulgaris - enzymology
Desulfovibrio vulgaris - metabolism
Electron Transport - physiology
Entropy
Hydrogenase - metabolism
Kinetics
Magnetic Resonance Imaging
Models, Molecular
Protein Binding
Protein Conformation
Protein Interaction Mapping
Thermodynamics
title The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20type%20I/type%20II%20cytochrome%20c3%20complex:%20an%20electron%20transfer%20link%20in%20the%20hydrogen-sulfate%20reduction%20pathway&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Pieulle,%20Laetitia&rft.date=2005-11-18&rft.volume=354&rft.issue=1&rft.spage=73&rft.epage=90&rft.pages=73-90&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2005.09.036&rft_dat=%3Cproquest_hal_p%3E68739327%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68739327&rft_id=info:pmid/16226767&rfr_iscdi=true