Percolation effects in functionally graded SOFC electrodes
A solid oxide fuel cell (SOFC) composite electrode exhibits a superior performance compared to a single phase electrode since the electrochemically active zone is spread into its volume. A functionally graded composite electrode consisting of monosized spherical electrocatalyst and electrolyte parti...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2007-02, Vol.52 (9), p.3190-3198 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3198 |
---|---|
container_issue | 9 |
container_start_page | 3190 |
container_title | Electrochimica acta |
container_volume | 52 |
creator | Schneider, L.C.R. Martin, C.L. Bultel, Y. Dessemond, L. Bouvard, D. |
description | A solid oxide fuel cell (SOFC) composite electrode exhibits a superior performance compared to a single phase electrode since the electrochemically active zone is spread into its volume. A functionally graded composite electrode consisting of monosized spherical electrocatalyst and electrolyte particles is sintered numerically by the discrete element method (DEM). The electrochemical performance is evaluated by a resistance network approach using Kirchhoff's current law. In the network discretization each contact between two particles is substituted by a bond resistance defined by contact size and the type of materials in contact.
The graded electrode is optimized by varying its composition at the electrolyte/electrode interface and the degree to which the composition decreases linearly towards the current collector/electrode interface. Regarding its electrochemical activity, the graded electrode does not perform significantly better than an optimized uniformly randomly mixed composite electrode but percolation of the graded electrode is improved. In order to demonstrate the importance of percolation effects, a novel better performing electrode is developed which contains electronically conducting particle chains arranged within a random packing of ionically conducting particles. |
doi_str_mv | 10.1016/j.electacta.2006.09.071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00333729v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468606010760</els_id><sourcerecordid>29840073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-c087a207d5c44bf2acb51ef92ceb9c26c318b100918944958c3c7a2cdfe9093d3</originalsourceid><addsrcrecordid>eNqFkFFLIzEUhcOisNXd37DzouDDjDeTmUniWylWhYIL6nNI79xoSjpTk1bw32-6FX0ULly4fOcc7mHsD4eKA-8uVxUFwq3NU9UAXQW6Asl_sAlXUpRCtfqITQC4KJtOdT_ZSUorAJCdhAm7-ksRx2C3fhwKci47pcIPhdsNuL_ZEN6L52h76ouH-_ms-B8Wx57SL3bsbEj0-2Ofsqf59ePstlzc39zNposSG9ltSwQlbQ2yb7Fplq62uGw5OV0jLTXWHQqulhxAc6WbRrcKBWYB9o40aNGLU3Zx8H2xwWyiX9v4bkbrze10YfY3ACGErPUbz-z5gd3E8XVHaWvWPiGFYAcad8nUWjX5dZFBeQAxjilFcp_OHMy-V7Myn72afa8GtMm9ZuXZR4RNaIOLdkCfvuSq5apudOamB45yN2-eoknoaUDqfcy-ph_9t1n_AIt0kRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29840073</pqid></control><display><type>article</type><title>Percolation effects in functionally graded SOFC electrodes</title><source>Elsevier ScienceDirect Journals</source><creator>Schneider, L.C.R. ; Martin, C.L. ; Bultel, Y. ; Dessemond, L. ; Bouvard, D.</creator><creatorcontrib>Schneider, L.C.R. ; Martin, C.L. ; Bultel, Y. ; Dessemond, L. ; Bouvard, D.</creatorcontrib><description>A solid oxide fuel cell (SOFC) composite electrode exhibits a superior performance compared to a single phase electrode since the electrochemically active zone is spread into its volume. A functionally graded composite electrode consisting of monosized spherical electrocatalyst and electrolyte particles is sintered numerically by the discrete element method (DEM). The electrochemical performance is evaluated by a resistance network approach using Kirchhoff's current law. In the network discretization each contact between two particles is substituted by a bond resistance defined by contact size and the type of materials in contact.
The graded electrode is optimized by varying its composition at the electrolyte/electrode interface and the degree to which the composition decreases linearly towards the current collector/electrode interface. Regarding its electrochemical activity, the graded electrode does not perform significantly better than an optimized uniformly randomly mixed composite electrode but percolation of the graded electrode is improved. In order to demonstrate the importance of percolation effects, a novel better performing electrode is developed which contains electronically conducting particle chains arranged within a random packing of ionically conducting particles.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2006.09.071</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical and Process Engineering ; Chemical Sciences ; Discrete element method ; Energy ; Energy. Thermal use of fuels ; Engineering Sciences ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Graded composite electrode ; Material chemistry ; Numerical sintering ; Percolation ; Resistor network</subject><ispartof>Electrochimica acta, 2007-02, Vol.52 (9), p.3190-3198</ispartof><rights>2006</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-c087a207d5c44bf2acb51ef92ceb9c26c318b100918944958c3c7a2cdfe9093d3</citedby><cites>FETCH-LOGICAL-c476t-c087a207d5c44bf2acb51ef92ceb9c26c318b100918944958c3c7a2cdfe9093d3</cites><orcidid>0000-0001-7092-6296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468606010760$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18518249$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00333729$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schneider, L.C.R.</creatorcontrib><creatorcontrib>Martin, C.L.</creatorcontrib><creatorcontrib>Bultel, Y.</creatorcontrib><creatorcontrib>Dessemond, L.</creatorcontrib><creatorcontrib>Bouvard, D.</creatorcontrib><title>Percolation effects in functionally graded SOFC electrodes</title><title>Electrochimica acta</title><description>A solid oxide fuel cell (SOFC) composite electrode exhibits a superior performance compared to a single phase electrode since the electrochemically active zone is spread into its volume. A functionally graded composite electrode consisting of monosized spherical electrocatalyst and electrolyte particles is sintered numerically by the discrete element method (DEM). The electrochemical performance is evaluated by a resistance network approach using Kirchhoff's current law. In the network discretization each contact between two particles is substituted by a bond resistance defined by contact size and the type of materials in contact.
The graded electrode is optimized by varying its composition at the electrolyte/electrode interface and the degree to which the composition decreases linearly towards the current collector/electrode interface. Regarding its electrochemical activity, the graded electrode does not perform significantly better than an optimized uniformly randomly mixed composite electrode but percolation of the graded electrode is improved. In order to demonstrate the importance of percolation effects, a novel better performing electrode is developed which contains electronically conducting particle chains arranged within a random packing of ionically conducting particles.</description><subject>Applied sciences</subject><subject>Chemical and Process Engineering</subject><subject>Chemical Sciences</subject><subject>Discrete element method</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering Sciences</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Graded composite electrode</subject><subject>Material chemistry</subject><subject>Numerical sintering</subject><subject>Percolation</subject><subject>Resistor network</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLIzEUhcOisNXd37DzouDDjDeTmUniWylWhYIL6nNI79xoSjpTk1bw32-6FX0ULly4fOcc7mHsD4eKA-8uVxUFwq3NU9UAXQW6Asl_sAlXUpRCtfqITQC4KJtOdT_ZSUorAJCdhAm7-ksRx2C3fhwKci47pcIPhdsNuL_ZEN6L52h76ouH-_ms-B8Wx57SL3bsbEj0-2Ofsqf59ePstlzc39zNposSG9ltSwQlbQ2yb7Fplq62uGw5OV0jLTXWHQqulhxAc6WbRrcKBWYB9o40aNGLU3Zx8H2xwWyiX9v4bkbrze10YfY3ACGErPUbz-z5gd3E8XVHaWvWPiGFYAcad8nUWjX5dZFBeQAxjilFcp_OHMy-V7Myn72afa8GtMm9ZuXZR4RNaIOLdkCfvuSq5apudOamB45yN2-eoknoaUDqfcy-ph_9t1n_AIt0kRw</recordid><startdate>20070215</startdate><enddate>20070215</enddate><creator>Schneider, L.C.R.</creator><creator>Martin, C.L.</creator><creator>Bultel, Y.</creator><creator>Dessemond, L.</creator><creator>Bouvard, D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7092-6296</orcidid></search><sort><creationdate>20070215</creationdate><title>Percolation effects in functionally graded SOFC electrodes</title><author>Schneider, L.C.R. ; Martin, C.L. ; Bultel, Y. ; Dessemond, L. ; Bouvard, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-c087a207d5c44bf2acb51ef92ceb9c26c318b100918944958c3c7a2cdfe9093d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Chemical and Process Engineering</topic><topic>Chemical Sciences</topic><topic>Discrete element method</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering Sciences</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Graded composite electrode</topic><topic>Material chemistry</topic><topic>Numerical sintering</topic><topic>Percolation</topic><topic>Resistor network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, L.C.R.</creatorcontrib><creatorcontrib>Martin, C.L.</creatorcontrib><creatorcontrib>Bultel, Y.</creatorcontrib><creatorcontrib>Dessemond, L.</creatorcontrib><creatorcontrib>Bouvard, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, L.C.R.</au><au>Martin, C.L.</au><au>Bultel, Y.</au><au>Dessemond, L.</au><au>Bouvard, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Percolation effects in functionally graded SOFC electrodes</atitle><jtitle>Electrochimica acta</jtitle><date>2007-02-15</date><risdate>2007</risdate><volume>52</volume><issue>9</issue><spage>3190</spage><epage>3198</epage><pages>3190-3198</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>A solid oxide fuel cell (SOFC) composite electrode exhibits a superior performance compared to a single phase electrode since the electrochemically active zone is spread into its volume. A functionally graded composite electrode consisting of monosized spherical electrocatalyst and electrolyte particles is sintered numerically by the discrete element method (DEM). The electrochemical performance is evaluated by a resistance network approach using Kirchhoff's current law. In the network discretization each contact between two particles is substituted by a bond resistance defined by contact size and the type of materials in contact.
The graded electrode is optimized by varying its composition at the electrolyte/electrode interface and the degree to which the composition decreases linearly towards the current collector/electrode interface. Regarding its electrochemical activity, the graded electrode does not perform significantly better than an optimized uniformly randomly mixed composite electrode but percolation of the graded electrode is improved. In order to demonstrate the importance of percolation effects, a novel better performing electrode is developed which contains electronically conducting particle chains arranged within a random packing of ionically conducting particles.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2006.09.071</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7092-6296</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2007-02, Vol.52 (9), p.3190-3198 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00333729v1 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Chemical and Process Engineering Chemical Sciences Discrete element method Energy Energy. Thermal use of fuels Engineering Sciences Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Graded composite electrode Material chemistry Numerical sintering Percolation Resistor network |
title | Percolation effects in functionally graded SOFC electrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Percolation%20effects%20in%20functionally%20graded%20SOFC%20electrodes&rft.jtitle=Electrochimica%20acta&rft.au=Schneider,%20L.C.R.&rft.date=2007-02-15&rft.volume=52&rft.issue=9&rft.spage=3190&rft.epage=3198&rft.pages=3190-3198&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2006.09.071&rft_dat=%3Cproquest_hal_p%3E29840073%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29840073&rft_id=info:pmid/&rft_els_id=S0013468606010760&rfr_iscdi=true |