Percolation effects in functionally graded SOFC electrodes

A solid oxide fuel cell (SOFC) composite electrode exhibits a superior performance compared to a single phase electrode since the electrochemically active zone is spread into its volume. A functionally graded composite electrode consisting of monosized spherical electrocatalyst and electrolyte parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2007-02, Vol.52 (9), p.3190-3198
Hauptverfasser: Schneider, L.C.R., Martin, C.L., Bultel, Y., Dessemond, L., Bouvard, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3198
container_issue 9
container_start_page 3190
container_title Electrochimica acta
container_volume 52
creator Schneider, L.C.R.
Martin, C.L.
Bultel, Y.
Dessemond, L.
Bouvard, D.
description A solid oxide fuel cell (SOFC) composite electrode exhibits a superior performance compared to a single phase electrode since the electrochemically active zone is spread into its volume. A functionally graded composite electrode consisting of monosized spherical electrocatalyst and electrolyte particles is sintered numerically by the discrete element method (DEM). The electrochemical performance is evaluated by a resistance network approach using Kirchhoff's current law. In the network discretization each contact between two particles is substituted by a bond resistance defined by contact size and the type of materials in contact. The graded electrode is optimized by varying its composition at the electrolyte/electrode interface and the degree to which the composition decreases linearly towards the current collector/electrode interface. Regarding its electrochemical activity, the graded electrode does not perform significantly better than an optimized uniformly randomly mixed composite electrode but percolation of the graded electrode is improved. In order to demonstrate the importance of percolation effects, a novel better performing electrode is developed which contains electronically conducting particle chains arranged within a random packing of ionically conducting particles.
doi_str_mv 10.1016/j.electacta.2006.09.071
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00333729v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468606010760</els_id><sourcerecordid>29840073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-c087a207d5c44bf2acb51ef92ceb9c26c318b100918944958c3c7a2cdfe9093d3</originalsourceid><addsrcrecordid>eNqFkFFLIzEUhcOisNXd37DzouDDjDeTmUniWylWhYIL6nNI79xoSjpTk1bw32-6FX0ULly4fOcc7mHsD4eKA-8uVxUFwq3NU9UAXQW6Asl_sAlXUpRCtfqITQC4KJtOdT_ZSUorAJCdhAm7-ksRx2C3fhwKci47pcIPhdsNuL_ZEN6L52h76ouH-_ms-B8Wx57SL3bsbEj0-2Ofsqf59ePstlzc39zNposSG9ltSwQlbQ2yb7Fplq62uGw5OV0jLTXWHQqulhxAc6WbRrcKBWYB9o40aNGLU3Zx8H2xwWyiX9v4bkbrze10YfY3ACGErPUbz-z5gd3E8XVHaWvWPiGFYAcad8nUWjX5dZFBeQAxjilFcp_OHMy-V7Myn72afa8GtMm9ZuXZR4RNaIOLdkCfvuSq5apudOamB45yN2-eoknoaUDqfcy-ph_9t1n_AIt0kRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29840073</pqid></control><display><type>article</type><title>Percolation effects in functionally graded SOFC electrodes</title><source>Elsevier ScienceDirect Journals</source><creator>Schneider, L.C.R. ; Martin, C.L. ; Bultel, Y. ; Dessemond, L. ; Bouvard, D.</creator><creatorcontrib>Schneider, L.C.R. ; Martin, C.L. ; Bultel, Y. ; Dessemond, L. ; Bouvard, D.</creatorcontrib><description>A solid oxide fuel cell (SOFC) composite electrode exhibits a superior performance compared to a single phase electrode since the electrochemically active zone is spread into its volume. A functionally graded composite electrode consisting of monosized spherical electrocatalyst and electrolyte particles is sintered numerically by the discrete element method (DEM). The electrochemical performance is evaluated by a resistance network approach using Kirchhoff's current law. In the network discretization each contact between two particles is substituted by a bond resistance defined by contact size and the type of materials in contact. The graded electrode is optimized by varying its composition at the electrolyte/electrode interface and the degree to which the composition decreases linearly towards the current collector/electrode interface. Regarding its electrochemical activity, the graded electrode does not perform significantly better than an optimized uniformly randomly mixed composite electrode but percolation of the graded electrode is improved. In order to demonstrate the importance of percolation effects, a novel better performing electrode is developed which contains electronically conducting particle chains arranged within a random packing of ionically conducting particles.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2006.09.071</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical and Process Engineering ; Chemical Sciences ; Discrete element method ; Energy ; Energy. Thermal use of fuels ; Engineering Sciences ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Graded composite electrode ; Material chemistry ; Numerical sintering ; Percolation ; Resistor network</subject><ispartof>Electrochimica acta, 2007-02, Vol.52 (9), p.3190-3198</ispartof><rights>2006</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-c087a207d5c44bf2acb51ef92ceb9c26c318b100918944958c3c7a2cdfe9093d3</citedby><cites>FETCH-LOGICAL-c476t-c087a207d5c44bf2acb51ef92ceb9c26c318b100918944958c3c7a2cdfe9093d3</cites><orcidid>0000-0001-7092-6296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468606010760$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18518249$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00333729$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schneider, L.C.R.</creatorcontrib><creatorcontrib>Martin, C.L.</creatorcontrib><creatorcontrib>Bultel, Y.</creatorcontrib><creatorcontrib>Dessemond, L.</creatorcontrib><creatorcontrib>Bouvard, D.</creatorcontrib><title>Percolation effects in functionally graded SOFC electrodes</title><title>Electrochimica acta</title><description>A solid oxide fuel cell (SOFC) composite electrode exhibits a superior performance compared to a single phase electrode since the electrochemically active zone is spread into its volume. A functionally graded composite electrode consisting of monosized spherical electrocatalyst and electrolyte particles is sintered numerically by the discrete element method (DEM). The electrochemical performance is evaluated by a resistance network approach using Kirchhoff's current law. In the network discretization each contact between two particles is substituted by a bond resistance defined by contact size and the type of materials in contact. The graded electrode is optimized by varying its composition at the electrolyte/electrode interface and the degree to which the composition decreases linearly towards the current collector/electrode interface. Regarding its electrochemical activity, the graded electrode does not perform significantly better than an optimized uniformly randomly mixed composite electrode but percolation of the graded electrode is improved. In order to demonstrate the importance of percolation effects, a novel better performing electrode is developed which contains electronically conducting particle chains arranged within a random packing of ionically conducting particles.</description><subject>Applied sciences</subject><subject>Chemical and Process Engineering</subject><subject>Chemical Sciences</subject><subject>Discrete element method</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering Sciences</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Graded composite electrode</subject><subject>Material chemistry</subject><subject>Numerical sintering</subject><subject>Percolation</subject><subject>Resistor network</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLIzEUhcOisNXd37DzouDDjDeTmUniWylWhYIL6nNI79xoSjpTk1bw32-6FX0ULly4fOcc7mHsD4eKA-8uVxUFwq3NU9UAXQW6Asl_sAlXUpRCtfqITQC4KJtOdT_ZSUorAJCdhAm7-ksRx2C3fhwKci47pcIPhdsNuL_ZEN6L52h76ouH-_ms-B8Wx57SL3bsbEj0-2Ofsqf59ePstlzc39zNposSG9ltSwQlbQ2yb7Fplq62uGw5OV0jLTXWHQqulhxAc6WbRrcKBWYB9o40aNGLU3Zx8H2xwWyiX9v4bkbrze10YfY3ACGErPUbz-z5gd3E8XVHaWvWPiGFYAcad8nUWjX5dZFBeQAxjilFcp_OHMy-V7Myn72afa8GtMm9ZuXZR4RNaIOLdkCfvuSq5apudOamB45yN2-eoknoaUDqfcy-ph_9t1n_AIt0kRw</recordid><startdate>20070215</startdate><enddate>20070215</enddate><creator>Schneider, L.C.R.</creator><creator>Martin, C.L.</creator><creator>Bultel, Y.</creator><creator>Dessemond, L.</creator><creator>Bouvard, D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7092-6296</orcidid></search><sort><creationdate>20070215</creationdate><title>Percolation effects in functionally graded SOFC electrodes</title><author>Schneider, L.C.R. ; Martin, C.L. ; Bultel, Y. ; Dessemond, L. ; Bouvard, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-c087a207d5c44bf2acb51ef92ceb9c26c318b100918944958c3c7a2cdfe9093d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Chemical and Process Engineering</topic><topic>Chemical Sciences</topic><topic>Discrete element method</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering Sciences</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Graded composite electrode</topic><topic>Material chemistry</topic><topic>Numerical sintering</topic><topic>Percolation</topic><topic>Resistor network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, L.C.R.</creatorcontrib><creatorcontrib>Martin, C.L.</creatorcontrib><creatorcontrib>Bultel, Y.</creatorcontrib><creatorcontrib>Dessemond, L.</creatorcontrib><creatorcontrib>Bouvard, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, L.C.R.</au><au>Martin, C.L.</au><au>Bultel, Y.</au><au>Dessemond, L.</au><au>Bouvard, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Percolation effects in functionally graded SOFC electrodes</atitle><jtitle>Electrochimica acta</jtitle><date>2007-02-15</date><risdate>2007</risdate><volume>52</volume><issue>9</issue><spage>3190</spage><epage>3198</epage><pages>3190-3198</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>A solid oxide fuel cell (SOFC) composite electrode exhibits a superior performance compared to a single phase electrode since the electrochemically active zone is spread into its volume. A functionally graded composite electrode consisting of monosized spherical electrocatalyst and electrolyte particles is sintered numerically by the discrete element method (DEM). The electrochemical performance is evaluated by a resistance network approach using Kirchhoff's current law. In the network discretization each contact between two particles is substituted by a bond resistance defined by contact size and the type of materials in contact. The graded electrode is optimized by varying its composition at the electrolyte/electrode interface and the degree to which the composition decreases linearly towards the current collector/electrode interface. Regarding its electrochemical activity, the graded electrode does not perform significantly better than an optimized uniformly randomly mixed composite electrode but percolation of the graded electrode is improved. In order to demonstrate the importance of percolation effects, a novel better performing electrode is developed which contains electronically conducting particle chains arranged within a random packing of ionically conducting particles.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2006.09.071</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7092-6296</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2007-02, Vol.52 (9), p.3190-3198
issn 0013-4686
1873-3859
language eng
recordid cdi_hal_primary_oai_HAL_hal_00333729v1
source Elsevier ScienceDirect Journals
subjects Applied sciences
Chemical and Process Engineering
Chemical Sciences
Discrete element method
Energy
Energy. Thermal use of fuels
Engineering Sciences
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Graded composite electrode
Material chemistry
Numerical sintering
Percolation
Resistor network
title Percolation effects in functionally graded SOFC electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Percolation%20effects%20in%20functionally%20graded%20SOFC%20electrodes&rft.jtitle=Electrochimica%20acta&rft.au=Schneider,%20L.C.R.&rft.date=2007-02-15&rft.volume=52&rft.issue=9&rft.spage=3190&rft.epage=3198&rft.pages=3190-3198&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/j.electacta.2006.09.071&rft_dat=%3Cproquest_hal_p%3E29840073%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29840073&rft_id=info:pmid/&rft_els_id=S0013468606010760&rfr_iscdi=true