The Hermitian Laplace Operator on Nearly Kähler Manifolds
The moduli space of infinitesimal deformations of a nearly Kähler structure on a compact 6-dimensional manifold is described by a certain eigenspace of the Laplace operator acting on co-closed primitive (1, 1) forms (cf. Moroianu et al. in Pacific J Math 235:57–72, 2008). Using the Hermitian Laplace...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2010-02, Vol.294 (1), p.251-272 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The moduli space
of infinitesimal deformations of a nearly Kähler structure on a compact 6-dimensional manifold is described by a certain eigenspace of the Laplace operator acting on co-closed primitive (1, 1) forms (cf. Moroianu et al. in Pacific J Math 235:57–72, 2008). Using the Hermitian Laplace operator and some representation theory, we compute the space
on all 6-dimensional homogeneous nearly Kähler manifolds. It turns out that the nearly Kähler structure is rigid except for the flag manifold
F
(1, 2) = SU
3
/
T
2
, which carries an 8-dimensional moduli space of infinitesimal nearly Kähler deformations, modeled on the Lie algebra
of the isometry group. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-009-0903-4 |