Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model

Lithium iron phosphate is one of the most promising positive-electrode materials for the next generation of lithium-ion batteries that will be used in electric and plug-in hybrid vehicles. Lithium deintercalation (intercalation) proceeds through a two-phase reaction between compositions very close t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2008-08, Vol.7 (8), p.665-671
Hauptverfasser: Delmas, C., Maccario, M., Croguennec, L., Le Cras, F., Weill, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lithium iron phosphate is one of the most promising positive-electrode materials for the next generation of lithium-ion batteries that will be used in electric and plug-in hybrid vehicles. Lithium deintercalation (intercalation) proceeds through a two-phase reaction between compositions very close to LiFePO 4 and FePO 4 . As both endmember phases are very poor ionic and electronic conductors, it is difficult to understand the intercalation mechanism at the microscopic scale. Here, we report a characterization of electrochemically deintercalated nanomaterials by X-ray diffraction and electron microscopy that shows the coexistence of fully intercalated and fully deintercalated individual particles. This result indicates that the growth reaction is considerably faster than its nucleation. The reaction mechanism is described by a ‘domino-cascade model’ and is explained by the existence of structural constraints occurring just at the reaction interface: the minimization of the elastic energy enhances the deintercalation (intercalation) process that occurs as a wave moving through the entire crystal. This model opens new perspectives in the search for new electrode materials even with poor ionic and electronic conductivities. Although lithium iron phosphate is a promising electrode material for lithium-ion batteries, its intercalation mechanism remains unclear. Characterization by X-ray diffraction and electron microscopy demonstrates that the lithium deintercalation process occurs as a wave moving through the crystal, and can be described by a domino-cascade model
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat2230