Dilational viscoelasticity and relaxation properties of interfacial electrostatic complexes between oppositely charged hydrophobic and hydrophilic polyelectrolytes

Strongly adsorbing hydrophobic cationic polyelectrolyte, Eudragit RS, containing ∼2.5 mol% of pendent hydrophilic trimethylammonium (TMA) groups irreversibly adsorbs from its methylene chloride (MCl) solution at the MCl/water interface and forms solid-like adsorption layers (ALs). Submitted to perio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2008-08, Vol.65 (1), p.43-49
Hauptverfasser: Babak, Valery G., Baros, Francis, Boury, Frank, Desbrières, Jacques
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1
container_start_page 43
container_title Colloids and surfaces, B, Biointerfaces
container_volume 65
creator Babak, Valery G.
Baros, Francis
Boury, Frank
Desbrières, Jacques
description Strongly adsorbing hydrophobic cationic polyelectrolyte, Eudragit RS, containing ∼2.5 mol% of pendent hydrophilic trimethylammonium (TMA) groups irreversibly adsorbs from its methylene chloride (MCl) solution at the MCl/water interface and forms solid-like adsorption layers (ALs). Submitted to periodic dilational deformations with the standard radial frequency ω 0 = 0.63 rad/s, these ALs exhibit relatively high dilational storage modulus E′ ∼ 20 mN/m and practically zero loss modulus E′′ at the bulk concentration C Eud = 4 × 10 −3 g/L. The frequency scanning of these ALs in the diapason ω = 0.01–0.63 rad/s and the approximation of the experimental dependences E′( ω) and E′′( ω) by two relaxation times rheological model makes it possible to estimate the crossing frequency of these ALs determined from the condition E′( ω c) = E′′( ω c) as ω c ∼ 5 × 10 −4 rad/s. Upon dissolving the hydrophilic anionic polyelectrolyte, chitosan sulfate (ChS), in the water phase ( C ChS = 3 × 10 −2 g/L) the electrostatic interpolyelectrolyte complexes form at the MCl/water interface. The elasticity moduli E′ and E′′ of these mixed AL did not undergo remarkable variations, but the crossing frequency is sharply increased by ∼10 times becoming equal to ω c ≅ 3 × 10 −3 rad/s. The increase of ω c certifies for the liquefaction of mixed Eudragit RS/ChS adsorption layers. A remarkable decrease of the storage modulus down to E′ = 8 mN/m and simultaneous increase of the crossing frequency up to ω c ≅ 10 −2 rad/s occurs upon increasing the concentrations of both components, Eudragit RS and ChS, up to 0.1 g/L. The liquefaction effect in the mixed ALs of oppositely charged polyelectrolytes was explained on the basis of the proposed relaxation mechanism. The effect of the liquefaction of adsorption layers of strongly adsorbing hydrophobic polyelectrolytes by formation of interpolyelectrolyte complexes with hydrophilic polyelectrolytes must be taken into account in the production of nano-capsules and nano-fibers.
doi_str_mv 10.1016/j.colsurfb.2008.02.019
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00320812v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092777650800091X</els_id><sourcerecordid>20725084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-d95d3d1b6dd48437026d140d0e13fcb05df008f55a42c48ef010e9b58ae3c9d23</originalsourceid><addsrcrecordid>eNqFkUGP0zAQhS0EYkvhL6xyQuKQMHacOL2xWmAXqRIXOFuOPaGu3DjYbtn8Hv4o7jbAcU_Ws743M3qPkGsKFQXavt9X2rt4DENfMYCuAlYB3TwjK9qJuuR1K56TFWyYKIVomyvyKsY9ADBOxUtyRTsOwAVfkd8frVPJ-lG54mSj9uhUTFbbNBdqNEXI-uERKKbgJwzJYiz8UNgxYRiUttmIDnUKPqYM6kL7w-TwIWM9pl-IY-GnyUeb0M2F3qnwA02xm00et_N9Npz3LNq6rCfv5mWkmxPG1-TFoFzEN8u7Jt8_f_p2e19uv959ub3ZlprXNJVm05ja0L41hne8FsBaQzkYQFoPuofGDDmpoWkUZ5p3OAAF3PRNp7DWG8PqNXl3mbtTTk7BHlSYpVdW3t9s5fkPoGbQUXaimX17YXMqP48Ykzzk9NA5NaI_Rilo29ZcwJMgA8EayPeuSXsBdU4yBhz-nUBBnjuXe_m3c3nuXAKTufNsvF42HPsDmv-2peQMfLgAmMM7WQwyaoujRmNDTlkab5_a8Qc2xsa5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20725084</pqid></control><display><type>article</type><title>Dilational viscoelasticity and relaxation properties of interfacial electrostatic complexes between oppositely charged hydrophobic and hydrophilic polyelectrolytes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Babak, Valery G. ; Baros, Francis ; Boury, Frank ; Desbrières, Jacques</creator><creatorcontrib>Babak, Valery G. ; Baros, Francis ; Boury, Frank ; Desbrières, Jacques</creatorcontrib><description>Strongly adsorbing hydrophobic cationic polyelectrolyte, Eudragit RS, containing ∼2.5 mol% of pendent hydrophilic trimethylammonium (TMA) groups irreversibly adsorbs from its methylene chloride (MCl) solution at the MCl/water interface and forms solid-like adsorption layers (ALs). Submitted to periodic dilational deformations with the standard radial frequency ω 0 = 0.63 rad/s, these ALs exhibit relatively high dilational storage modulus E′ ∼ 20 mN/m and practically zero loss modulus E′′ at the bulk concentration C Eud = 4 × 10 −3 g/L. The frequency scanning of these ALs in the diapason ω = 0.01–0.63 rad/s and the approximation of the experimental dependences E′( ω) and E′′( ω) by two relaxation times rheological model makes it possible to estimate the crossing frequency of these ALs determined from the condition E′( ω c) = E′′( ω c) as ω c ∼ 5 × 10 −4 rad/s. Upon dissolving the hydrophilic anionic polyelectrolyte, chitosan sulfate (ChS), in the water phase ( C ChS = 3 × 10 −2 g/L) the electrostatic interpolyelectrolyte complexes form at the MCl/water interface. The elasticity moduli E′ and E′′ of these mixed AL did not undergo remarkable variations, but the crossing frequency is sharply increased by ∼10 times becoming equal to ω c ≅ 3 × 10 −3 rad/s. The increase of ω c certifies for the liquefaction of mixed Eudragit RS/ChS adsorption layers. A remarkable decrease of the storage modulus down to E′ = 8 mN/m and simultaneous increase of the crossing frequency up to ω c ≅ 10 −2 rad/s occurs upon increasing the concentrations of both components, Eudragit RS and ChS, up to 0.1 g/L. The liquefaction effect in the mixed ALs of oppositely charged polyelectrolytes was explained on the basis of the proposed relaxation mechanism. The effect of the liquefaction of adsorption layers of strongly adsorbing hydrophobic polyelectrolytes by formation of interpolyelectrolyte complexes with hydrophilic polyelectrolytes must be taken into account in the production of nano-capsules and nano-fibers.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2008.02.019</identifier><identifier>PMID: 18400474</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acrylic Resins - chemistry ; Adsorption ; Biocompatible Materials - chemistry ; Chemical Physics ; Chitosan sulfate ; Crossing frequency ; Dilational storage and loss moduli ; Dilational viscoelasticity of adsorption layers ; Elasticity ; Electrolytes - chemistry ; Eudragit RS ; Hydrophobic and Hydrophilic Interactions ; Nano-fibers ; Nano-particles ; Physics ; Polymers - chemistry ; Static Electricity ; Surface Tension ; Trimethyl Ammonium Compounds - chemistry ; Viscosity</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2008-08, Vol.65 (1), p.43-49</ispartof><rights>2008 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-d95d3d1b6dd48437026d140d0e13fcb05df008f55a42c48ef010e9b58ae3c9d23</citedby><cites>FETCH-LOGICAL-c431t-d95d3d1b6dd48437026d140d0e13fcb05df008f55a42c48ef010e9b58ae3c9d23</cites><orcidid>0000-0002-3457-3988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092777650800091X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18400474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00320812$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Babak, Valery G.</creatorcontrib><creatorcontrib>Baros, Francis</creatorcontrib><creatorcontrib>Boury, Frank</creatorcontrib><creatorcontrib>Desbrières, Jacques</creatorcontrib><title>Dilational viscoelasticity and relaxation properties of interfacial electrostatic complexes between oppositely charged hydrophobic and hydrophilic polyelectrolytes</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>Strongly adsorbing hydrophobic cationic polyelectrolyte, Eudragit RS, containing ∼2.5 mol% of pendent hydrophilic trimethylammonium (TMA) groups irreversibly adsorbs from its methylene chloride (MCl) solution at the MCl/water interface and forms solid-like adsorption layers (ALs). Submitted to periodic dilational deformations with the standard radial frequency ω 0 = 0.63 rad/s, these ALs exhibit relatively high dilational storage modulus E′ ∼ 20 mN/m and practically zero loss modulus E′′ at the bulk concentration C Eud = 4 × 10 −3 g/L. The frequency scanning of these ALs in the diapason ω = 0.01–0.63 rad/s and the approximation of the experimental dependences E′( ω) and E′′( ω) by two relaxation times rheological model makes it possible to estimate the crossing frequency of these ALs determined from the condition E′( ω c) = E′′( ω c) as ω c ∼ 5 × 10 −4 rad/s. Upon dissolving the hydrophilic anionic polyelectrolyte, chitosan sulfate (ChS), in the water phase ( C ChS = 3 × 10 −2 g/L) the electrostatic interpolyelectrolyte complexes form at the MCl/water interface. The elasticity moduli E′ and E′′ of these mixed AL did not undergo remarkable variations, but the crossing frequency is sharply increased by ∼10 times becoming equal to ω c ≅ 3 × 10 −3 rad/s. The increase of ω c certifies for the liquefaction of mixed Eudragit RS/ChS adsorption layers. A remarkable decrease of the storage modulus down to E′ = 8 mN/m and simultaneous increase of the crossing frequency up to ω c ≅ 10 −2 rad/s occurs upon increasing the concentrations of both components, Eudragit RS and ChS, up to 0.1 g/L. The liquefaction effect in the mixed ALs of oppositely charged polyelectrolytes was explained on the basis of the proposed relaxation mechanism. The effect of the liquefaction of adsorption layers of strongly adsorbing hydrophobic polyelectrolytes by formation of interpolyelectrolyte complexes with hydrophilic polyelectrolytes must be taken into account in the production of nano-capsules and nano-fibers.</description><subject>Acrylic Resins - chemistry</subject><subject>Adsorption</subject><subject>Biocompatible Materials - chemistry</subject><subject>Chemical Physics</subject><subject>Chitosan sulfate</subject><subject>Crossing frequency</subject><subject>Dilational storage and loss moduli</subject><subject>Dilational viscoelasticity of adsorption layers</subject><subject>Elasticity</subject><subject>Electrolytes - chemistry</subject><subject>Eudragit RS</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Nano-fibers</subject><subject>Nano-particles</subject><subject>Physics</subject><subject>Polymers - chemistry</subject><subject>Static Electricity</subject><subject>Surface Tension</subject><subject>Trimethyl Ammonium Compounds - chemistry</subject><subject>Viscosity</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUGP0zAQhS0EYkvhL6xyQuKQMHacOL2xWmAXqRIXOFuOPaGu3DjYbtn8Hv4o7jbAcU_Ws743M3qPkGsKFQXavt9X2rt4DENfMYCuAlYB3TwjK9qJuuR1K56TFWyYKIVomyvyKsY9ADBOxUtyRTsOwAVfkd8frVPJ-lG54mSj9uhUTFbbNBdqNEXI-uERKKbgJwzJYiz8UNgxYRiUttmIDnUKPqYM6kL7w-TwIWM9pl-IY-GnyUeb0M2F3qnwA02xm00et_N9Npz3LNq6rCfv5mWkmxPG1-TFoFzEN8u7Jt8_f_p2e19uv959ub3ZlprXNJVm05ja0L41hne8FsBaQzkYQFoPuofGDDmpoWkUZ5p3OAAF3PRNp7DWG8PqNXl3mbtTTk7BHlSYpVdW3t9s5fkPoGbQUXaimX17YXMqP48Ykzzk9NA5NaI_Rilo29ZcwJMgA8EayPeuSXsBdU4yBhz-nUBBnjuXe_m3c3nuXAKTufNsvF42HPsDmv-2peQMfLgAmMM7WQwyaoujRmNDTlkab5_a8Qc2xsa5</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Babak, Valery G.</creator><creator>Baros, Francis</creator><creator>Boury, Frank</creator><creator>Desbrières, Jacques</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3457-3988</orcidid></search><sort><creationdate>20080801</creationdate><title>Dilational viscoelasticity and relaxation properties of interfacial electrostatic complexes between oppositely charged hydrophobic and hydrophilic polyelectrolytes</title><author>Babak, Valery G. ; Baros, Francis ; Boury, Frank ; Desbrières, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-d95d3d1b6dd48437026d140d0e13fcb05df008f55a42c48ef010e9b58ae3c9d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Adsorption</topic><topic>Biocompatible Materials - chemistry</topic><topic>Chemical Physics</topic><topic>Chitosan sulfate</topic><topic>Crossing frequency</topic><topic>Dilational storage and loss moduli</topic><topic>Dilational viscoelasticity of adsorption layers</topic><topic>Elasticity</topic><topic>Electrolytes - chemistry</topic><topic>Eudragit RS</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Nano-fibers</topic><topic>Nano-particles</topic><topic>Physics</topic><topic>Polymers - chemistry</topic><topic>Static Electricity</topic><topic>Surface Tension</topic><topic>Trimethyl Ammonium Compounds - chemistry</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babak, Valery G.</creatorcontrib><creatorcontrib>Baros, Francis</creatorcontrib><creatorcontrib>Boury, Frank</creatorcontrib><creatorcontrib>Desbrières, Jacques</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babak, Valery G.</au><au>Baros, Francis</au><au>Boury, Frank</au><au>Desbrières, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dilational viscoelasticity and relaxation properties of interfacial electrostatic complexes between oppositely charged hydrophobic and hydrophilic polyelectrolytes</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>65</volume><issue>1</issue><spage>43</spage><epage>49</epage><pages>43-49</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>Strongly adsorbing hydrophobic cationic polyelectrolyte, Eudragit RS, containing ∼2.5 mol% of pendent hydrophilic trimethylammonium (TMA) groups irreversibly adsorbs from its methylene chloride (MCl) solution at the MCl/water interface and forms solid-like adsorption layers (ALs). Submitted to periodic dilational deformations with the standard radial frequency ω 0 = 0.63 rad/s, these ALs exhibit relatively high dilational storage modulus E′ ∼ 20 mN/m and practically zero loss modulus E′′ at the bulk concentration C Eud = 4 × 10 −3 g/L. The frequency scanning of these ALs in the diapason ω = 0.01–0.63 rad/s and the approximation of the experimental dependences E′( ω) and E′′( ω) by two relaxation times rheological model makes it possible to estimate the crossing frequency of these ALs determined from the condition E′( ω c) = E′′( ω c) as ω c ∼ 5 × 10 −4 rad/s. Upon dissolving the hydrophilic anionic polyelectrolyte, chitosan sulfate (ChS), in the water phase ( C ChS = 3 × 10 −2 g/L) the electrostatic interpolyelectrolyte complexes form at the MCl/water interface. The elasticity moduli E′ and E′′ of these mixed AL did not undergo remarkable variations, but the crossing frequency is sharply increased by ∼10 times becoming equal to ω c ≅ 3 × 10 −3 rad/s. The increase of ω c certifies for the liquefaction of mixed Eudragit RS/ChS adsorption layers. A remarkable decrease of the storage modulus down to E′ = 8 mN/m and simultaneous increase of the crossing frequency up to ω c ≅ 10 −2 rad/s occurs upon increasing the concentrations of both components, Eudragit RS and ChS, up to 0.1 g/L. The liquefaction effect in the mixed ALs of oppositely charged polyelectrolytes was explained on the basis of the proposed relaxation mechanism. The effect of the liquefaction of adsorption layers of strongly adsorbing hydrophobic polyelectrolytes by formation of interpolyelectrolyte complexes with hydrophilic polyelectrolytes must be taken into account in the production of nano-capsules and nano-fibers.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>18400474</pmid><doi>10.1016/j.colsurfb.2008.02.019</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3457-3988</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2008-08, Vol.65 (1), p.43-49
issn 0927-7765
1873-4367
language eng
recordid cdi_hal_primary_oai_HAL_hal_00320812v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acrylic Resins - chemistry
Adsorption
Biocompatible Materials - chemistry
Chemical Physics
Chitosan sulfate
Crossing frequency
Dilational storage and loss moduli
Dilational viscoelasticity of adsorption layers
Elasticity
Electrolytes - chemistry
Eudragit RS
Hydrophobic and Hydrophilic Interactions
Nano-fibers
Nano-particles
Physics
Polymers - chemistry
Static Electricity
Surface Tension
Trimethyl Ammonium Compounds - chemistry
Viscosity
title Dilational viscoelasticity and relaxation properties of interfacial electrostatic complexes between oppositely charged hydrophobic and hydrophilic polyelectrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dilational%20viscoelasticity%20and%20relaxation%20properties%20of%20interfacial%20electrostatic%20complexes%20between%20oppositely%20charged%20hydrophobic%20and%20hydrophilic%20polyelectrolytes&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Babak,%20Valery%20G.&rft.date=2008-08-01&rft.volume=65&rft.issue=1&rft.spage=43&rft.epage=49&rft.pages=43-49&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2008.02.019&rft_dat=%3Cproquest_hal_p%3E20725084%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20725084&rft_id=info:pmid/18400474&rft_els_id=S092777650800091X&rfr_iscdi=true