The effect of the earth pressure coefficients on the runout of granular material

In the framework of a better territory risk assessment and decision making, numerical simulation can provide a useful tool for investigating the propagation phase of phenomena involving granular material, like rock avalanches, when realistic geological contexts are considered. Among continuum mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modelling & software : with environment data news 2007-10, Vol.22 (10), p.1437-1454
Hauptverfasser: Pirulli, Marina, Bristeau, Marie-Odile, Mangeney, Anne, Scavia, Claudio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1454
container_issue 10
container_start_page 1437
container_title Environmental modelling & software : with environment data news
container_volume 22
creator Pirulli, Marina
Bristeau, Marie-Odile
Mangeney, Anne
Scavia, Claudio
description In the framework of a better territory risk assessment and decision making, numerical simulation can provide a useful tool for investigating the propagation phase of phenomena involving granular material, like rock avalanches, when realistic geological contexts are considered. Among continuum mechanics models, the numerical model SHWCIN uses the depth averaged Saint Venant approach, in which the avalanche thickness ( H) is very much smaller than its extent parallel to the bed ( L). The material is assumed to be incompressible and the mass and the momentum equations are written in a depth averaged form. The SHWCIN code, based on the hypothesis of isotropy of normal stresses ( σ xx = σ yy = σ zz ), has been modified (new code: RASH 3D) in order to allow for the assumption of anisotropy of normal stresses ( σ xx = Kσ zz ; σ yy = Kσ zz ). A comparison among the results obtained by assuming isotropy or anisotropy is given through the back analysis of a set of laboratory experiments [Gray, J.M.N.T., Wieland, M., Hutter, K., 1999. Gravity-driven free surface flow of granular avalanches over complex basal topography. Proceedings of the Royal Society of London, Series A 455(1841)] and of a case history of rock avalanche (Frank slide, Canada). The carried out simulations have also underlined the importance of using a different earth pressure coefficient value ( K) for directions of convergence and of divergence of the flux.
doi_str_mv 10.1016/j.envsoft.2006.06.006
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00313762v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815206001575</els_id><sourcerecordid>8273536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-cbc7b591a84786b62bf5cda58c0b4c6fdf14b57e300d3278c344b84fee2f36dc3</originalsourceid><addsrcrecordid>eNqNkUFLwzAUx3NQcE4_gtCT4KH1pWnT9CRjqBMGepjnkKYvLqNrZtIO_Pa22_Dq4EHykt__EfIj5I5CQoHyx02C7T440yUpAE_GAn5BJpTxLBY0T6_IdQgbABj22YR8rNYYoTGou8iZqBs75bt1tPMYQu8x0m64ttpi24XItQfE963rD4Evr9q-UT7aqg69Vc0NuTSqCXh7Wqfk8-V5NV_Ey_fXt_lsGesc0i7WlS6qvKRKZIXgFU8rk-ta5UJDlWluakOzKi-QAdQsLYRmWVaJzCCmhvFasyl5OM5dq0buvN0q_yOdsnIxW8rxDIBRVvB0Twf2_sjuvPvuMXRya4PGplEtuj7ItCzzUrAzQCgELc8AacmpEFwMYH4EtXcheDR_b6UgR2NyI0_G5GhMjgV8yD0dczj84d6il2FUoLG2fnAla2f_mfALeRij9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19618868</pqid></control><display><type>article</type><title>The effect of the earth pressure coefficients on the runout of granular material</title><source>Elsevier ScienceDirect Journals</source><creator>Pirulli, Marina ; Bristeau, Marie-Odile ; Mangeney, Anne ; Scavia, Claudio</creator><creatorcontrib>Pirulli, Marina ; Bristeau, Marie-Odile ; Mangeney, Anne ; Scavia, Claudio</creatorcontrib><description>In the framework of a better territory risk assessment and decision making, numerical simulation can provide a useful tool for investigating the propagation phase of phenomena involving granular material, like rock avalanches, when realistic geological contexts are considered. Among continuum mechanics models, the numerical model SHWCIN uses the depth averaged Saint Venant approach, in which the avalanche thickness ( H) is very much smaller than its extent parallel to the bed ( L). The material is assumed to be incompressible and the mass and the momentum equations are written in a depth averaged form. The SHWCIN code, based on the hypothesis of isotropy of normal stresses ( σ xx = σ yy = σ zz ), has been modified (new code: RASH 3D) in order to allow for the assumption of anisotropy of normal stresses ( σ xx = Kσ zz ; σ yy = Kσ zz ). A comparison among the results obtained by assuming isotropy or anisotropy is given through the back analysis of a set of laboratory experiments [Gray, J.M.N.T., Wieland, M., Hutter, K., 1999. Gravity-driven free surface flow of granular avalanches over complex basal topography. Proceedings of the Royal Society of London, Series A 455(1841)] and of a case history of rock avalanche (Frank slide, Canada). The carried out simulations have also underlined the importance of using a different earth pressure coefficient value ( K) for directions of convergence and of divergence of the flux.</description><identifier>ISSN: 1364-8152</identifier><identifier>DOI: 10.1016/j.envsoft.2006.06.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Avalanches ; Back analysis ; Canada ; Computer programs ; Earth pressure coefficients ; Earth Sciences ; Geology ; Granular material ; Historical account ; Laboratory testing ; Mathematical models ; Numerical analysis ; Q1 ; Q3 ; Risk assessment ; Rock avalanche ; Sciences of the Universe ; Simulation ; Stress ; territory ; Topography ; Volcanology</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2007-10, Vol.22 (10), p.1437-1454</ispartof><rights>2006 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-cbc7b591a84786b62bf5cda58c0b4c6fdf14b57e300d3278c344b84fee2f36dc3</citedby><cites>FETCH-LOGICAL-c502t-cbc7b591a84786b62bf5cda58c0b4c6fdf14b57e300d3278c344b84fee2f36dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1364815206001575$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00313762$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pirulli, Marina</creatorcontrib><creatorcontrib>Bristeau, Marie-Odile</creatorcontrib><creatorcontrib>Mangeney, Anne</creatorcontrib><creatorcontrib>Scavia, Claudio</creatorcontrib><title>The effect of the earth pressure coefficients on the runout of granular material</title><title>Environmental modelling &amp; software : with environment data news</title><description>In the framework of a better territory risk assessment and decision making, numerical simulation can provide a useful tool for investigating the propagation phase of phenomena involving granular material, like rock avalanches, when realistic geological contexts are considered. Among continuum mechanics models, the numerical model SHWCIN uses the depth averaged Saint Venant approach, in which the avalanche thickness ( H) is very much smaller than its extent parallel to the bed ( L). The material is assumed to be incompressible and the mass and the momentum equations are written in a depth averaged form. The SHWCIN code, based on the hypothesis of isotropy of normal stresses ( σ xx = σ yy = σ zz ), has been modified (new code: RASH 3D) in order to allow for the assumption of anisotropy of normal stresses ( σ xx = Kσ zz ; σ yy = Kσ zz ). A comparison among the results obtained by assuming isotropy or anisotropy is given through the back analysis of a set of laboratory experiments [Gray, J.M.N.T., Wieland, M., Hutter, K., 1999. Gravity-driven free surface flow of granular avalanches over complex basal topography. Proceedings of the Royal Society of London, Series A 455(1841)] and of a case history of rock avalanche (Frank slide, Canada). The carried out simulations have also underlined the importance of using a different earth pressure coefficient value ( K) for directions of convergence and of divergence of the flux.</description><subject>Avalanches</subject><subject>Back analysis</subject><subject>Canada</subject><subject>Computer programs</subject><subject>Earth pressure coefficients</subject><subject>Earth Sciences</subject><subject>Geology</subject><subject>Granular material</subject><subject>Historical account</subject><subject>Laboratory testing</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Q1</subject><subject>Q3</subject><subject>Risk assessment</subject><subject>Rock avalanche</subject><subject>Sciences of the Universe</subject><subject>Simulation</subject><subject>Stress</subject><subject>territory</subject><subject>Topography</subject><subject>Volcanology</subject><issn>1364-8152</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkUFLwzAUx3NQcE4_gtCT4KH1pWnT9CRjqBMGepjnkKYvLqNrZtIO_Pa22_Dq4EHykt__EfIj5I5CQoHyx02C7T440yUpAE_GAn5BJpTxLBY0T6_IdQgbABj22YR8rNYYoTGou8iZqBs75bt1tPMYQu8x0m64ttpi24XItQfE963rD4Evr9q-UT7aqg69Vc0NuTSqCXh7Wqfk8-V5NV_Ey_fXt_lsGesc0i7WlS6qvKRKZIXgFU8rk-ta5UJDlWluakOzKi-QAdQsLYRmWVaJzCCmhvFasyl5OM5dq0buvN0q_yOdsnIxW8rxDIBRVvB0Twf2_sjuvPvuMXRya4PGplEtuj7ItCzzUrAzQCgELc8AacmpEFwMYH4EtXcheDR_b6UgR2NyI0_G5GhMjgV8yD0dczj84d6il2FUoLG2fnAla2f_mfALeRij9w</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Pirulli, Marina</creator><creator>Bristeau, Marie-Odile</creator><creator>Mangeney, Anne</creator><creator>Scavia, Claudio</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20071001</creationdate><title>The effect of the earth pressure coefficients on the runout of granular material</title><author>Pirulli, Marina ; Bristeau, Marie-Odile ; Mangeney, Anne ; Scavia, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-cbc7b591a84786b62bf5cda58c0b4c6fdf14b57e300d3278c344b84fee2f36dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Avalanches</topic><topic>Back analysis</topic><topic>Canada</topic><topic>Computer programs</topic><topic>Earth pressure coefficients</topic><topic>Earth Sciences</topic><topic>Geology</topic><topic>Granular material</topic><topic>Historical account</topic><topic>Laboratory testing</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Q1</topic><topic>Q3</topic><topic>Risk assessment</topic><topic>Rock avalanche</topic><topic>Sciences of the Universe</topic><topic>Simulation</topic><topic>Stress</topic><topic>territory</topic><topic>Topography</topic><topic>Volcanology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pirulli, Marina</creatorcontrib><creatorcontrib>Bristeau, Marie-Odile</creatorcontrib><creatorcontrib>Mangeney, Anne</creatorcontrib><creatorcontrib>Scavia, Claudio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pirulli, Marina</au><au>Bristeau, Marie-Odile</au><au>Mangeney, Anne</au><au>Scavia, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of the earth pressure coefficients on the runout of granular material</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2007-10-01</date><risdate>2007</risdate><volume>22</volume><issue>10</issue><spage>1437</spage><epage>1454</epage><pages>1437-1454</pages><issn>1364-8152</issn><abstract>In the framework of a better territory risk assessment and decision making, numerical simulation can provide a useful tool for investigating the propagation phase of phenomena involving granular material, like rock avalanches, when realistic geological contexts are considered. Among continuum mechanics models, the numerical model SHWCIN uses the depth averaged Saint Venant approach, in which the avalanche thickness ( H) is very much smaller than its extent parallel to the bed ( L). The material is assumed to be incompressible and the mass and the momentum equations are written in a depth averaged form. The SHWCIN code, based on the hypothesis of isotropy of normal stresses ( σ xx = σ yy = σ zz ), has been modified (new code: RASH 3D) in order to allow for the assumption of anisotropy of normal stresses ( σ xx = Kσ zz ; σ yy = Kσ zz ). A comparison among the results obtained by assuming isotropy or anisotropy is given through the back analysis of a set of laboratory experiments [Gray, J.M.N.T., Wieland, M., Hutter, K., 1999. Gravity-driven free surface flow of granular avalanches over complex basal topography. Proceedings of the Royal Society of London, Series A 455(1841)] and of a case history of rock avalanche (Frank slide, Canada). The carried out simulations have also underlined the importance of using a different earth pressure coefficient value ( K) for directions of convergence and of divergence of the flux.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2006.06.006</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2007-10, Vol.22 (10), p.1437-1454
issn 1364-8152
language eng
recordid cdi_hal_primary_oai_HAL_hal_00313762v1
source Elsevier ScienceDirect Journals
subjects Avalanches
Back analysis
Canada
Computer programs
Earth pressure coefficients
Earth Sciences
Geology
Granular material
Historical account
Laboratory testing
Mathematical models
Numerical analysis
Q1
Q3
Risk assessment
Rock avalanche
Sciences of the Universe
Simulation
Stress
territory
Topography
Volcanology
title The effect of the earth pressure coefficients on the runout of granular material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20the%20earth%20pressure%20coefficients%20on%20the%20runout%20of%20granular%20material&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Pirulli,%20Marina&rft.date=2007-10-01&rft.volume=22&rft.issue=10&rft.spage=1437&rft.epage=1454&rft.pages=1437-1454&rft.issn=1364-8152&rft_id=info:doi/10.1016/j.envsoft.2006.06.006&rft_dat=%3Cproquest_hal_p%3E8273536%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19618868&rft_id=info:pmid/&rft_els_id=S1364815206001575&rfr_iscdi=true