Singular Arcs in the Generalized Goddard’s Problem
We investigate variants of Goddard’s problems for nonvertical trajectories. The control is the thrust force, and the objective is to maximize a certain final cost, typically, the final mass. In this article, performing an analysis based on the Pontryagin maximum principle, we prove that optimal traj...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2008-11, Vol.139 (2), p.439-461 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 461 |
---|---|
container_issue | 2 |
container_start_page | 439 |
container_title | Journal of optimization theory and applications |
container_volume | 139 |
creator | Bonnans, F. Martinon, P. Trélat, E. |
description | We investigate variants of Goddard’s problems for nonvertical trajectories. The control is the thrust force, and the objective is to maximize a certain final cost, typically, the final mass. In this article, performing an analysis based on the Pontryagin maximum principle, we prove that optimal trajectories may involve singular arcs (along which the norm of the thrust is neither zero nor maximal), that are computed and characterized. Numerical simulations are carried out, both with direct and indirect methods, demonstrating the relevance of taking into account singular arcs in the control strategy. The indirect method that we use is based on our previous theoretical analysis and consists in combining a shooting method with an homotopic method. The homotopic approach leads to a quadratic regularization of the problem and is a way to tackle the problem of nonsmoothness of the optimal control. |
doi_str_mv | 10.1007/s10957-008-9387-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00312010v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082202753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-19c729120f71abb721fbedd3cd034dcd1c21553ac0639088225a85937ac5c1da3</originalsourceid><addsrcrecordid>eNp9kc1KxDAURoMoOP48gLsiKLqo3ps0TbIcREdhQEFdh0ySaqXTajIj6MrX8PV8ElMqIoKuAsnJl5P7EbKDcIQA4jgiKC5yAJkrJkWOK2SEXLCcSiFXyQiA0pxRptbJRowPAKCkKEakuK7bu2VjQjYONmZ1my3ufTbxrQ-mqV-9yyadcya4j7f3mF2Fbtb4-RZZq0wT_fbXukluz05vTs7z6eXk4mQ8zW0hy0WOygqqkEIl0MxmgmI1884x64AVzjq0FDlnxkLJFEhJKTeSKyaM5RadYZvkcMi9N41-DPXchBfdmVqfj6e63wNgKR7hGRO7P7CPoXta-rjQ8zpa3zSm9d0yapZeKnnBE3jwL4iQRIAKzhK6-wt96JahTV_WqMoS-nkmCAfIhi7G4KtvUwTdd6OHbpKs1H03upfd-wo20ZqmCqa1dfy-SCGNgVOaODpwMR21dz78EPgz_BO4J5tj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196603239</pqid></control><display><type>article</type><title>Singular Arcs in the Generalized Goddard’s Problem</title><source>SpringerLink Journals</source><creator>Bonnans, F. ; Martinon, P. ; Trélat, E.</creator><creatorcontrib>Bonnans, F. ; Martinon, P. ; Trélat, E.</creatorcontrib><description>We investigate variants of Goddard’s problems for nonvertical trajectories. The control is the thrust force, and the objective is to maximize a certain final cost, typically, the final mass. In this article, performing an analysis based on the Pontryagin maximum principle, we prove that optimal trajectories may involve singular arcs (along which the norm of the thrust is neither zero nor maximal), that are computed and characterized. Numerical simulations are carried out, both with direct and indirect methods, demonstrating the relevance of taking into account singular arcs in the control strategy. The indirect method that we use is based on our previous theoretical analysis and consists in combining a shooting method with an homotopic method. The homotopic approach leads to a quadratic regularization of the problem and is a way to tackle the problem of nonsmoothness of the optimal control.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-008-9387-1</identifier><identifier>CODEN: JOTABN</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aerodynamics ; Applications of Mathematics ; Applied sciences ; Calculus of Variations and Optimal Control; Optimization ; Computer science; control theory; systems ; Computer simulation ; Control system synthesis ; Control theory. Systems ; Energy consumption ; Engineering ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Methods ; Norms ; Operations Research/Decision Theory ; Optimal control ; Optimization ; Optimization and Control ; Physics ; Regularization ; Research methodology ; Simulation ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics ; Strategy ; Studies ; Theory of Computation ; Thrust ; Trajectories ; Variance analysis ; Velocity</subject><ispartof>Journal of optimization theory and applications, 2008-11, Vol.139 (2), p.439-461</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-19c729120f71abb721fbedd3cd034dcd1c21553ac0639088225a85937ac5c1da3</citedby><cites>FETCH-LOGICAL-c486t-19c729120f71abb721fbedd3cd034dcd1c21553ac0639088225a85937ac5c1da3</cites><orcidid>0000-0003-0571-2376 ; 0000-0002-0656-7003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-008-9387-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-008-9387-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20859522$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00312010$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonnans, F.</creatorcontrib><creatorcontrib>Martinon, P.</creatorcontrib><creatorcontrib>Trélat, E.</creatorcontrib><title>Singular Arcs in the Generalized Goddard’s Problem</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>We investigate variants of Goddard’s problems for nonvertical trajectories. The control is the thrust force, and the objective is to maximize a certain final cost, typically, the final mass. In this article, performing an analysis based on the Pontryagin maximum principle, we prove that optimal trajectories may involve singular arcs (along which the norm of the thrust is neither zero nor maximal), that are computed and characterized. Numerical simulations are carried out, both with direct and indirect methods, demonstrating the relevance of taking into account singular arcs in the control strategy. The indirect method that we use is based on our previous theoretical analysis and consists in combining a shooting method with an homotopic method. The homotopic approach leads to a quadratic regularization of the problem and is a way to tackle the problem of nonsmoothness of the optimal control.</description><subject>Aerodynamics</subject><subject>Applications of Mathematics</subject><subject>Applied sciences</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Methods</subject><subject>Norms</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Optimization and Control</subject><subject>Physics</subject><subject>Regularization</subject><subject>Research methodology</subject><subject>Simulation</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><subject>Strategy</subject><subject>Studies</subject><subject>Theory of Computation</subject><subject>Thrust</subject><subject>Trajectories</subject><subject>Variance analysis</subject><subject>Velocity</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc1KxDAURoMoOP48gLsiKLqo3ps0TbIcREdhQEFdh0ySaqXTajIj6MrX8PV8ElMqIoKuAsnJl5P7EbKDcIQA4jgiKC5yAJkrJkWOK2SEXLCcSiFXyQiA0pxRptbJRowPAKCkKEakuK7bu2VjQjYONmZ1my3ufTbxrQ-mqV-9yyadcya4j7f3mF2Fbtb4-RZZq0wT_fbXukluz05vTs7z6eXk4mQ8zW0hy0WOygqqkEIl0MxmgmI1884x64AVzjq0FDlnxkLJFEhJKTeSKyaM5RadYZvkcMi9N41-DPXchBfdmVqfj6e63wNgKR7hGRO7P7CPoXta-rjQ8zpa3zSm9d0yapZeKnnBE3jwL4iQRIAKzhK6-wt96JahTV_WqMoS-nkmCAfIhi7G4KtvUwTdd6OHbpKs1H03upfd-wo20ZqmCqa1dfy-SCGNgVOaODpwMR21dz78EPgz_BO4J5tj</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Bonnans, F.</creator><creator>Martinon, P.</creator><creator>Trélat, E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0571-2376</orcidid><orcidid>https://orcid.org/0000-0002-0656-7003</orcidid></search><sort><creationdate>20081101</creationdate><title>Singular Arcs in the Generalized Goddard’s Problem</title><author>Bonnans, F. ; Martinon, P. ; Trélat, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-19c729120f71abb721fbedd3cd034dcd1c21553ac0639088225a85937ac5c1da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aerodynamics</topic><topic>Applications of Mathematics</topic><topic>Applied sciences</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Methods</topic><topic>Norms</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Optimization and Control</topic><topic>Physics</topic><topic>Regularization</topic><topic>Research methodology</topic><topic>Simulation</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><topic>Strategy</topic><topic>Studies</topic><topic>Theory of Computation</topic><topic>Thrust</topic><topic>Trajectories</topic><topic>Variance analysis</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnans, F.</creatorcontrib><creatorcontrib>Martinon, P.</creatorcontrib><creatorcontrib>Trélat, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnans, F.</au><au>Martinon, P.</au><au>Trélat, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular Arcs in the Generalized Goddard’s Problem</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>139</volume><issue>2</issue><spage>439</spage><epage>461</epage><pages>439-461</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><coden>JOTABN</coden><abstract>We investigate variants of Goddard’s problems for nonvertical trajectories. The control is the thrust force, and the objective is to maximize a certain final cost, typically, the final mass. In this article, performing an analysis based on the Pontryagin maximum principle, we prove that optimal trajectories may involve singular arcs (along which the norm of the thrust is neither zero nor maximal), that are computed and characterized. Numerical simulations are carried out, both with direct and indirect methods, demonstrating the relevance of taking into account singular arcs in the control strategy. The indirect method that we use is based on our previous theoretical analysis and consists in combining a shooting method with an homotopic method. The homotopic approach leads to a quadratic regularization of the problem and is a way to tackle the problem of nonsmoothness of the optimal control.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10957-008-9387-1</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0571-2376</orcidid><orcidid>https://orcid.org/0000-0002-0656-7003</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2008-11, Vol.139 (2), p.439-461 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00312010v1 |
source | SpringerLink Journals |
subjects | Aerodynamics Applications of Mathematics Applied sciences Calculus of Variations and Optimal Control Optimization Computer science control theory systems Computer simulation Control system synthesis Control theory. Systems Energy consumption Engineering Exact sciences and technology Fundamental areas of phenomenology (including applications) Mathematics Mathematics and Statistics Maximum principle Methods Norms Operations Research/Decision Theory Optimal control Optimization Optimization and Control Physics Regularization Research methodology Simulation Solid dynamics (ballistics, collision, multibody system, stabilization...) Solid mechanics Strategy Studies Theory of Computation Thrust Trajectories Variance analysis Velocity |
title | Singular Arcs in the Generalized Goddard’s Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20Arcs%20in%20the%20Generalized%20Goddard%E2%80%99s%20Problem&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Bonnans,%20F.&rft.date=2008-11-01&rft.volume=139&rft.issue=2&rft.spage=439&rft.epage=461&rft.pages=439-461&rft.issn=0022-3239&rft.eissn=1573-2878&rft.coden=JOTABN&rft_id=info:doi/10.1007/s10957-008-9387-1&rft_dat=%3Cproquest_hal_p%3E1082202753%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196603239&rft_id=info:pmid/&rfr_iscdi=true |