Singular Arcs in the Generalized Goddard’s Problem

We investigate variants of Goddard’s problems for nonvertical trajectories. The control is the thrust force, and the objective is to maximize a certain final cost, typically, the final mass. In this article, performing an analysis based on the Pontryagin maximum principle, we prove that optimal traj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2008-11, Vol.139 (2), p.439-461
Hauptverfasser: Bonnans, F., Martinon, P., Trélat, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 461
container_issue 2
container_start_page 439
container_title Journal of optimization theory and applications
container_volume 139
creator Bonnans, F.
Martinon, P.
Trélat, E.
description We investigate variants of Goddard’s problems for nonvertical trajectories. The control is the thrust force, and the objective is to maximize a certain final cost, typically, the final mass. In this article, performing an analysis based on the Pontryagin maximum principle, we prove that optimal trajectories may involve singular arcs (along which the norm of the thrust is neither zero nor maximal), that are computed and characterized. Numerical simulations are carried out, both with direct and indirect methods, demonstrating the relevance of taking into account singular arcs in the control strategy. The indirect method that we use is based on our previous theoretical analysis and consists in combining a shooting method with an homotopic method. The homotopic approach leads to a quadratic regularization of the problem and is a way to tackle the problem of nonsmoothness of the optimal control.
doi_str_mv 10.1007/s10957-008-9387-1
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00312010v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082202753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-19c729120f71abb721fbedd3cd034dcd1c21553ac0639088225a85937ac5c1da3</originalsourceid><addsrcrecordid>eNp9kc1KxDAURoMoOP48gLsiKLqo3ps0TbIcREdhQEFdh0ySaqXTajIj6MrX8PV8ElMqIoKuAsnJl5P7EbKDcIQA4jgiKC5yAJkrJkWOK2SEXLCcSiFXyQiA0pxRptbJRowPAKCkKEakuK7bu2VjQjYONmZ1my3ufTbxrQ-mqV-9yyadcya4j7f3mF2Fbtb4-RZZq0wT_fbXukluz05vTs7z6eXk4mQ8zW0hy0WOygqqkEIl0MxmgmI1884x64AVzjq0FDlnxkLJFEhJKTeSKyaM5RadYZvkcMi9N41-DPXchBfdmVqfj6e63wNgKR7hGRO7P7CPoXta-rjQ8zpa3zSm9d0yapZeKnnBE3jwL4iQRIAKzhK6-wt96JahTV_WqMoS-nkmCAfIhi7G4KtvUwTdd6OHbpKs1H03upfd-wo20ZqmCqa1dfy-SCGNgVOaODpwMR21dz78EPgz_BO4J5tj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196603239</pqid></control><display><type>article</type><title>Singular Arcs in the Generalized Goddard’s Problem</title><source>SpringerLink Journals</source><creator>Bonnans, F. ; Martinon, P. ; Trélat, E.</creator><creatorcontrib>Bonnans, F. ; Martinon, P. ; Trélat, E.</creatorcontrib><description>We investigate variants of Goddard’s problems for nonvertical trajectories. The control is the thrust force, and the objective is to maximize a certain final cost, typically, the final mass. In this article, performing an analysis based on the Pontryagin maximum principle, we prove that optimal trajectories may involve singular arcs (along which the norm of the thrust is neither zero nor maximal), that are computed and characterized. Numerical simulations are carried out, both with direct and indirect methods, demonstrating the relevance of taking into account singular arcs in the control strategy. The indirect method that we use is based on our previous theoretical analysis and consists in combining a shooting method with an homotopic method. The homotopic approach leads to a quadratic regularization of the problem and is a way to tackle the problem of nonsmoothness of the optimal control.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-008-9387-1</identifier><identifier>CODEN: JOTABN</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aerodynamics ; Applications of Mathematics ; Applied sciences ; Calculus of Variations and Optimal Control; Optimization ; Computer science; control theory; systems ; Computer simulation ; Control system synthesis ; Control theory. Systems ; Energy consumption ; Engineering ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Methods ; Norms ; Operations Research/Decision Theory ; Optimal control ; Optimization ; Optimization and Control ; Physics ; Regularization ; Research methodology ; Simulation ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics ; Strategy ; Studies ; Theory of Computation ; Thrust ; Trajectories ; Variance analysis ; Velocity</subject><ispartof>Journal of optimization theory and applications, 2008-11, Vol.139 (2), p.439-461</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-19c729120f71abb721fbedd3cd034dcd1c21553ac0639088225a85937ac5c1da3</citedby><cites>FETCH-LOGICAL-c486t-19c729120f71abb721fbedd3cd034dcd1c21553ac0639088225a85937ac5c1da3</cites><orcidid>0000-0003-0571-2376 ; 0000-0002-0656-7003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-008-9387-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-008-9387-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20859522$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00312010$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonnans, F.</creatorcontrib><creatorcontrib>Martinon, P.</creatorcontrib><creatorcontrib>Trélat, E.</creatorcontrib><title>Singular Arcs in the Generalized Goddard’s Problem</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>We investigate variants of Goddard’s problems for nonvertical trajectories. The control is the thrust force, and the objective is to maximize a certain final cost, typically, the final mass. In this article, performing an analysis based on the Pontryagin maximum principle, we prove that optimal trajectories may involve singular arcs (along which the norm of the thrust is neither zero nor maximal), that are computed and characterized. Numerical simulations are carried out, both with direct and indirect methods, demonstrating the relevance of taking into account singular arcs in the control strategy. The indirect method that we use is based on our previous theoretical analysis and consists in combining a shooting method with an homotopic method. The homotopic approach leads to a quadratic regularization of the problem and is a way to tackle the problem of nonsmoothness of the optimal control.</description><subject>Aerodynamics</subject><subject>Applications of Mathematics</subject><subject>Applied sciences</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Methods</subject><subject>Norms</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Optimization and Control</subject><subject>Physics</subject><subject>Regularization</subject><subject>Research methodology</subject><subject>Simulation</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><subject>Strategy</subject><subject>Studies</subject><subject>Theory of Computation</subject><subject>Thrust</subject><subject>Trajectories</subject><subject>Variance analysis</subject><subject>Velocity</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc1KxDAURoMoOP48gLsiKLqo3ps0TbIcREdhQEFdh0ySaqXTajIj6MrX8PV8ElMqIoKuAsnJl5P7EbKDcIQA4jgiKC5yAJkrJkWOK2SEXLCcSiFXyQiA0pxRptbJRowPAKCkKEakuK7bu2VjQjYONmZ1my3ufTbxrQ-mqV-9yyadcya4j7f3mF2Fbtb4-RZZq0wT_fbXukluz05vTs7z6eXk4mQ8zW0hy0WOygqqkEIl0MxmgmI1884x64AVzjq0FDlnxkLJFEhJKTeSKyaM5RadYZvkcMi9N41-DPXchBfdmVqfj6e63wNgKR7hGRO7P7CPoXta-rjQ8zpa3zSm9d0yapZeKnnBE3jwL4iQRIAKzhK6-wt96JahTV_WqMoS-nkmCAfIhi7G4KtvUwTdd6OHbpKs1H03upfd-wo20ZqmCqa1dfy-SCGNgVOaODpwMR21dz78EPgz_BO4J5tj</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Bonnans, F.</creator><creator>Martinon, P.</creator><creator>Trélat, E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0571-2376</orcidid><orcidid>https://orcid.org/0000-0002-0656-7003</orcidid></search><sort><creationdate>20081101</creationdate><title>Singular Arcs in the Generalized Goddard’s Problem</title><author>Bonnans, F. ; Martinon, P. ; Trélat, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-19c729120f71abb721fbedd3cd034dcd1c21553ac0639088225a85937ac5c1da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aerodynamics</topic><topic>Applications of Mathematics</topic><topic>Applied sciences</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Methods</topic><topic>Norms</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Optimization and Control</topic><topic>Physics</topic><topic>Regularization</topic><topic>Research methodology</topic><topic>Simulation</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><topic>Strategy</topic><topic>Studies</topic><topic>Theory of Computation</topic><topic>Thrust</topic><topic>Trajectories</topic><topic>Variance analysis</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnans, F.</creatorcontrib><creatorcontrib>Martinon, P.</creatorcontrib><creatorcontrib>Trélat, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnans, F.</au><au>Martinon, P.</au><au>Trélat, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular Arcs in the Generalized Goddard’s Problem</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>139</volume><issue>2</issue><spage>439</spage><epage>461</epage><pages>439-461</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><coden>JOTABN</coden><abstract>We investigate variants of Goddard’s problems for nonvertical trajectories. The control is the thrust force, and the objective is to maximize a certain final cost, typically, the final mass. In this article, performing an analysis based on the Pontryagin maximum principle, we prove that optimal trajectories may involve singular arcs (along which the norm of the thrust is neither zero nor maximal), that are computed and characterized. Numerical simulations are carried out, both with direct and indirect methods, demonstrating the relevance of taking into account singular arcs in the control strategy. The indirect method that we use is based on our previous theoretical analysis and consists in combining a shooting method with an homotopic method. The homotopic approach leads to a quadratic regularization of the problem and is a way to tackle the problem of nonsmoothness of the optimal control.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10957-008-9387-1</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0571-2376</orcidid><orcidid>https://orcid.org/0000-0002-0656-7003</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2008-11, Vol.139 (2), p.439-461
issn 0022-3239
1573-2878
language eng
recordid cdi_hal_primary_oai_HAL_hal_00312010v1
source SpringerLink Journals
subjects Aerodynamics
Applications of Mathematics
Applied sciences
Calculus of Variations and Optimal Control
Optimization
Computer science
control theory
systems
Computer simulation
Control system synthesis
Control theory. Systems
Energy consumption
Engineering
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematics
Mathematics and Statistics
Maximum principle
Methods
Norms
Operations Research/Decision Theory
Optimal control
Optimization
Optimization and Control
Physics
Regularization
Research methodology
Simulation
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
Strategy
Studies
Theory of Computation
Thrust
Trajectories
Variance analysis
Velocity
title Singular Arcs in the Generalized Goddard’s Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20Arcs%20in%20the%20Generalized%20Goddard%E2%80%99s%20Problem&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Bonnans,%20F.&rft.date=2008-11-01&rft.volume=139&rft.issue=2&rft.spage=439&rft.epage=461&rft.pages=439-461&rft.issn=0022-3239&rft.eissn=1573-2878&rft.coden=JOTABN&rft_id=info:doi/10.1007/s10957-008-9387-1&rft_dat=%3Cproquest_hal_p%3E1082202753%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196603239&rft_id=info:pmid/&rfr_iscdi=true