A column generation method for the multiple-choice multi-dimensional knapsack problem

In this paper, we propose to solve large-scale multiple-choice multi-dimensional knapsack problems. We investigate the use of the column generation and effective solution procedures. The method is in the spirit of well-known local search metaheuristics, in which the search process is composed of two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2010-05, Vol.46 (1), p.51-73
Hauptverfasser: Cherfi, N., Hifi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue 1
container_start_page 51
container_title Computational optimization and applications
container_volume 46
creator Cherfi, N.
Hifi, M.
description In this paper, we propose to solve large-scale multiple-choice multi-dimensional knapsack problems. We investigate the use of the column generation and effective solution procedures. The method is in the spirit of well-known local search metaheuristics, in which the search process is composed of two complementary stages: (i) a rounding solution stage and (ii) a restricted exact solution procedure. The method is analyzed computationally on a set of problem instances of the literature and compared to the results reached by both Cplex solver and a recent reactive local search. For these instances, most of which cannot be solved to proven optimality in a reasonable runtime, the proposed method improves 21 out of 27.
doi_str_mv 10.1007/s10589-008-9184-7
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00308694v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743583703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-47c8beb050cc12434098ab8a6a5c93a0b6bc7e97799e94011ab5f545009983f43</originalsourceid><addsrcrecordid>eNp1kUFLxDAQhYMouK7-AG_Fi3iITpqkSY6LqCsseHHPIc2mbjVt1qQV_PdmqSgInoYZvjfzhofQOYFrAiBuEgEuFQaQWBHJsDhAM8IFxaVU7BDNQJUVrgDoMTpJ6RUAlKDlDK0XhQ1-7PrixfUumqENfdG5YRs2RRNiMWxd0Y1-aHfeYbsNrf3u8abtXJ8ybnzx1ptdMvat2MVQe9edoqPG-OTOvuscre_vnm-XePX08Hi7WGFLJRkwE1bWrgYO1pKSUQZKmlqaynCrqIG6qq1wSgilnGJAiKl5wxnP5pWkDaNzdDXt3Rqvd7HtTPzUwbR6uVjp_Sw_DLJS7INk9nJis8f30aVBd22yznvTuzAmLRjlkgqgmbz4Q76GMeY_ky4JrzgIJjJEJsjGkFJ0zc99AnofiZ4iyRak3kei95py0qTM9i8u_i7-X_QFF7yNQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215650747</pqid></control><display><type>article</type><title>A column generation method for the multiple-choice multi-dimensional knapsack problem</title><source>EBSCO Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cherfi, N. ; Hifi, M.</creator><creatorcontrib>Cherfi, N. ; Hifi, M.</creatorcontrib><description>In this paper, we propose to solve large-scale multiple-choice multi-dimensional knapsack problems. We investigate the use of the column generation and effective solution procedures. The method is in the spirit of well-known local search metaheuristics, in which the search process is composed of two complementary stages: (i) a rounding solution stage and (ii) a restricted exact solution procedure. The method is analyzed computationally on a set of problem instances of the literature and compared to the results reached by both Cplex solver and a recent reactive local search. For these instances, most of which cannot be solved to proven optimality in a reasonable runtime, the proposed method improves 21 out of 27.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-008-9184-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Computer Science ; Convex and Discrete Geometry ; Heuristic ; Knapsack problem ; Linear programming ; Management Science ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Statistics ; Studies</subject><ispartof>Computational optimization and applications, 2010-05, Vol.46 (1), p.51-73</ispartof><rights>Springer Science+Business Media, LLC 2008</rights><rights>Springer Science+Business Media, LLC 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-47c8beb050cc12434098ab8a6a5c93a0b6bc7e97799e94011ab5f545009983f43</citedby><cites>FETCH-LOGICAL-c381t-47c8beb050cc12434098ab8a6a5c93a0b6bc7e97799e94011ab5f545009983f43</cites><orcidid>0000-0002-1031-7701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-008-9184-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-008-9184-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00308694$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cherfi, N.</creatorcontrib><creatorcontrib>Hifi, M.</creatorcontrib><title>A column generation method for the multiple-choice multi-dimensional knapsack problem</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>In this paper, we propose to solve large-scale multiple-choice multi-dimensional knapsack problems. We investigate the use of the column generation and effective solution procedures. The method is in the spirit of well-known local search metaheuristics, in which the search process is composed of two complementary stages: (i) a rounding solution stage and (ii) a restricted exact solution procedure. The method is analyzed computationally on a set of problem instances of the literature and compared to the results reached by both Cplex solver and a recent reactive local search. For these instances, most of which cannot be solved to proven optimality in a reasonable runtime, the proposed method improves 21 out of 27.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Heuristic</subject><subject>Knapsack problem</subject><subject>Linear programming</subject><subject>Management Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Statistics</subject><subject>Studies</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUFLxDAQhYMouK7-AG_Fi3iITpqkSY6LqCsseHHPIc2mbjVt1qQV_PdmqSgInoYZvjfzhofQOYFrAiBuEgEuFQaQWBHJsDhAM8IFxaVU7BDNQJUVrgDoMTpJ6RUAlKDlDK0XhQ1-7PrixfUumqENfdG5YRs2RRNiMWxd0Y1-aHfeYbsNrf3u8abtXJ8ybnzx1ptdMvat2MVQe9edoqPG-OTOvuscre_vnm-XePX08Hi7WGFLJRkwE1bWrgYO1pKSUQZKmlqaynCrqIG6qq1wSgilnGJAiKl5wxnP5pWkDaNzdDXt3Rqvd7HtTPzUwbR6uVjp_Sw_DLJS7INk9nJis8f30aVBd22yznvTuzAmLRjlkgqgmbz4Q76GMeY_ky4JrzgIJjJEJsjGkFJ0zc99AnofiZ4iyRak3kei95py0qTM9i8u_i7-X_QFF7yNQw</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Cherfi, N.</creator><creator>Hifi, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1031-7701</orcidid></search><sort><creationdate>20100501</creationdate><title>A column generation method for the multiple-choice multi-dimensional knapsack problem</title><author>Cherfi, N. ; Hifi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-47c8beb050cc12434098ab8a6a5c93a0b6bc7e97799e94011ab5f545009983f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Heuristic</topic><topic>Knapsack problem</topic><topic>Linear programming</topic><topic>Management Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherfi, N.</creatorcontrib><creatorcontrib>Hifi, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherfi, N.</au><au>Hifi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A column generation method for the multiple-choice multi-dimensional knapsack problem</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>46</volume><issue>1</issue><spage>51</spage><epage>73</epage><pages>51-73</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>In this paper, we propose to solve large-scale multiple-choice multi-dimensional knapsack problems. We investigate the use of the column generation and effective solution procedures. The method is in the spirit of well-known local search metaheuristics, in which the search process is composed of two complementary stages: (i) a rounding solution stage and (ii) a restricted exact solution procedure. The method is analyzed computationally on a set of problem instances of the literature and compared to the results reached by both Cplex solver and a recent reactive local search. For these instances, most of which cannot be solved to proven optimality in a reasonable runtime, the proposed method improves 21 out of 27.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10589-008-9184-7</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-1031-7701</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational optimization and applications, 2010-05, Vol.46 (1), p.51-73
issn 0926-6003
1573-2894
language eng
recordid cdi_hal_primary_oai_HAL_hal_00308694v1
source EBSCO Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Computer Science
Convex and Discrete Geometry
Heuristic
Knapsack problem
Linear programming
Management Science
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Statistics
Studies
title A column generation method for the multiple-choice multi-dimensional knapsack problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20column%20generation%20method%20for%20the%20multiple-choice%20multi-dimensional%20knapsack%20problem&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Cherfi,%20N.&rft.date=2010-05-01&rft.volume=46&rft.issue=1&rft.spage=51&rft.epage=73&rft.pages=51-73&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-008-9184-7&rft_dat=%3Cproquest_hal_p%3E743583703%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215650747&rft_id=info:pmid/&rfr_iscdi=true