Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes
We consider numerical solutions of the two‐dimensional non‐linear shallow water equations with a bed slope source term. These equations are well‐suited for the study of many geophysical phenomena, including coastal engineering where wetting and drying processes are commonly observed. To accurately d...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2007-02, Vol.53 (5), p.867-894 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider numerical solutions of the two‐dimensional non‐linear shallow water equations with a bed slope source term. These equations are well‐suited for the study of many geophysical phenomena, including coastal engineering where wetting and drying processes are commonly observed. To accurately describe the evolution of moving shorelines over strongly varying topography, we first investigate two well‐balanced methods of Godunov‐type, relying on the resolution of non‐homogeneous Riemann problems. But even if these schemes were previously proved to be efficient in many simulations involving occurrences of dry zones, they fail to compute accurately moving shorelines. From this, we investigate a new model, called SURF_WB, especially designed for the simulation of wave transformations over strongly varying topography. This model relies on a recent reconstruction method for the treatment of the bed‐slope source term and is able to handle strong variations of topography and to preserve the steady states at rest. In addition, the use of the recent VFRoe‐ncv Riemann solver leads to a robust treatment of wetting and drying phenomena. An adapted ‘second order’ reconstruction generates accurate bore‐capturing abilities.This scheme is validated against several analytical solutions, involving varying topography, time dependent moving shorelines and convergences toward steady states. This model should have an impact in the prediction of 2D moving shorelines over strongly irregular topography. Copyright © 2006 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0271-2091 1097-0363 |
DOI: | 10.1002/fld.1311 |