Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal

We show that by using a one-dimensional anisotropic photonic structure, it is possible to realize optical wave polarization conversion by reflection and transmission processes. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2007, Vol.24 (9), p.2710-2718
Hauptverfasser: OUCHANI, Noama, BRIA, Driss, DJAFARI-ROUHANI, Bahram, NOUGAOUI, Abdelkarim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2718
container_issue 9
container_start_page 2710
container_title Journal of the Optical Society of America. A, Optics, image science, and vision
container_volume 24
creator OUCHANI, Noama
BRIA, Driss
DJAFARI-ROUHANI, Bahram
NOUGAOUI, Abdelkarim
description We show that by using a one-dimensional anisotropic photonic structure, it is possible to realize optical wave polarization conversion by reflection and transmission processes. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitted P(S) polarized wave. This polarization conversion property can be fulfilled with a simple finite superlattice (SL) constituted of anisotropic dielectric materials. We discuss the appropriate choices of the material and geometrical properties to realize such structures. The transmission and reflection coefficients are calculated in the framework of the Green's function method. The amplitude and the polarization characteristics of reflected and transmitted waves are determined as functions of frequency, wave vector k(parallel) (parallel to the interface), and the orientations of the principal axes of the layers constituting the SL. Specific applications of these results are given for a SL consisting of alternating biaxial anisotropic layers NaNO(2)/SbSI sandwiched between two identical semi-infinite isotropic media.
doi_str_mv 10.1364/josaa.24.002710
format Article
fullrecord <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00283163v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17767240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-c8fe5e161c02698b5bbfdacf050aa8939061c1c9cca38243ea16d0fdd79bca93</originalsourceid><addsrcrecordid>eNpFkD1vwjAQhq2qVaG0c7cqS4cOAX8lsUdEP2iFxFD26OI4YBSSyDao9NfXKKhMd7r3eW94EHokeExYyifb1gGMKR9jTDOCr9CQJBTHImH0OuxY8DhLqBygO-e2GGOeiuwWDUiWpRnleIjWKwuNO2jrdKxrrbw1auIvtx2sG-2Nirq2Bmt-wZu2iVTbhNhrG-2dadYReY0q0xivo8LAj4E66jatb5vQU_boPNT36KaC2umH8xyh1fvbajaPF8uPz9l0ESsmuY-VqHSiSUoUpqkURVIUVQmqwgkGEJJJHCKipFLABOVMA0lLXJVlJgsFko3QS_92A3XeWbMDe8xbMPl8ushPt-BJMJKyAwnspGeVbZ2zuvovEJyf7OZfy-_pNKc87-2GxlPf6PbFTpcX_qwzAM9nAJyCugoelXEXThLCCRPsDwHzhXI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal</title><source>Optica Publishing Group Journals</source><creator>OUCHANI, Noama ; BRIA, Driss ; DJAFARI-ROUHANI, Bahram ; NOUGAOUI, Abdelkarim</creator><creatorcontrib>OUCHANI, Noama ; BRIA, Driss ; DJAFARI-ROUHANI, Bahram ; NOUGAOUI, Abdelkarim</creatorcontrib><description>We show that by using a one-dimensional anisotropic photonic structure, it is possible to realize optical wave polarization conversion by reflection and transmission processes. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitted P(S) polarized wave. This polarization conversion property can be fulfilled with a simple finite superlattice (SL) constituted of anisotropic dielectric materials. We discuss the appropriate choices of the material and geometrical properties to realize such structures. The transmission and reflection coefficients are calculated in the framework of the Green's function method. The amplitude and the polarization characteristics of reflected and transmitted waves are determined as functions of frequency, wave vector k(parallel) (parallel to the interface), and the orientations of the principal axes of the layers constituting the SL. Specific applications of these results are given for a SL consisting of alternating biaxial anisotropic layers NaNO(2)/SbSI sandwiched between two identical semi-infinite isotropic media.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/josaa.24.002710</identifier><identifier>PMID: 17767240</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>Engineering Sciences ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Optical materials ; Optics ; Photonic bandgap materials ; Physics</subject><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2007, Vol.24 (9), p.2710-2718</ispartof><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-c8fe5e161c02698b5bbfdacf050aa8939061c1c9cca38243ea16d0fdd79bca93</citedby><orcidid>0000-0001-6983-9689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3256,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19114138$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17767240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00283163$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>OUCHANI, Noama</creatorcontrib><creatorcontrib>BRIA, Driss</creatorcontrib><creatorcontrib>DJAFARI-ROUHANI, Bahram</creatorcontrib><creatorcontrib>NOUGAOUI, Abdelkarim</creatorcontrib><title>Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>We show that by using a one-dimensional anisotropic photonic structure, it is possible to realize optical wave polarization conversion by reflection and transmission processes. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitted P(S) polarized wave. This polarization conversion property can be fulfilled with a simple finite superlattice (SL) constituted of anisotropic dielectric materials. We discuss the appropriate choices of the material and geometrical properties to realize such structures. The transmission and reflection coefficients are calculated in the framework of the Green's function method. The amplitude and the polarization characteristics of reflected and transmitted waves are determined as functions of frequency, wave vector k(parallel) (parallel to the interface), and the orientations of the principal axes of the layers constituting the SL. Specific applications of these results are given for a SL consisting of alternating biaxial anisotropic layers NaNO(2)/SbSI sandwiched between two identical semi-infinite isotropic media.</description><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Photonic bandgap materials</subject><subject>Physics</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkD1vwjAQhq2qVaG0c7cqS4cOAX8lsUdEP2iFxFD26OI4YBSSyDao9NfXKKhMd7r3eW94EHokeExYyifb1gGMKR9jTDOCr9CQJBTHImH0OuxY8DhLqBygO-e2GGOeiuwWDUiWpRnleIjWKwuNO2jrdKxrrbw1auIvtx2sG-2Nirq2Bmt-wZu2iVTbhNhrG-2dadYReY0q0xivo8LAj4E66jatb5vQU_boPNT36KaC2umH8xyh1fvbajaPF8uPz9l0ESsmuY-VqHSiSUoUpqkURVIUVQmqwgkGEJJJHCKipFLABOVMA0lLXJVlJgsFko3QS_92A3XeWbMDe8xbMPl8ushPt-BJMJKyAwnspGeVbZ2zuvovEJyf7OZfy-_pNKc87-2GxlPf6PbFTpcX_qwzAM9nAJyCugoelXEXThLCCRPsDwHzhXI</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>OUCHANI, Noama</creator><creator>BRIA, Driss</creator><creator>DJAFARI-ROUHANI, Bahram</creator><creator>NOUGAOUI, Abdelkarim</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6983-9689</orcidid></search><sort><creationdate>2007</creationdate><title>Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal</title><author>OUCHANI, Noama ; BRIA, Driss ; DJAFARI-ROUHANI, Bahram ; NOUGAOUI, Abdelkarim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-c8fe5e161c02698b5bbfdacf050aa8939061c1c9cca38243ea16d0fdd79bca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Photonic bandgap materials</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OUCHANI, Noama</creatorcontrib><creatorcontrib>BRIA, Driss</creatorcontrib><creatorcontrib>DJAFARI-ROUHANI, Bahram</creatorcontrib><creatorcontrib>NOUGAOUI, Abdelkarim</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OUCHANI, Noama</au><au>BRIA, Driss</au><au>DJAFARI-ROUHANI, Bahram</au><au>NOUGAOUI, Abdelkarim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2007</date><risdate>2007</risdate><volume>24</volume><issue>9</issue><spage>2710</spage><epage>2718</epage><pages>2710-2718</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>We show that by using a one-dimensional anisotropic photonic structure, it is possible to realize optical wave polarization conversion by reflection and transmission processes. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitted P(S) polarized wave. This polarization conversion property can be fulfilled with a simple finite superlattice (SL) constituted of anisotropic dielectric materials. We discuss the appropriate choices of the material and geometrical properties to realize such structures. The transmission and reflection coefficients are calculated in the framework of the Green's function method. The amplitude and the polarization characteristics of reflected and transmitted waves are determined as functions of frequency, wave vector k(parallel) (parallel to the interface), and the orientations of the principal axes of the layers constituting the SL. Specific applications of these results are given for a SL consisting of alternating biaxial anisotropic layers NaNO(2)/SbSI sandwiched between two identical semi-infinite isotropic media.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>17767240</pmid><doi>10.1364/josaa.24.002710</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6983-9689</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics, image science, and vision, 2007, Vol.24 (9), p.2710-2718
issn 1084-7529
1520-8532
language eng
recordid cdi_hal_primary_oai_HAL_hal_00283163v1
source Optica Publishing Group Journals
subjects Engineering Sciences
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Optical materials
Optics
Photonic bandgap materials
Physics
title Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transverse-electric/transverse-magnetic%20polarization%20converter%20using%201D%20finite%20biaxial%20photonic%20crystal&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=OUCHANI,%20Noama&rft.date=2007&rft.volume=24&rft.issue=9&rft.spage=2710&rft.epage=2718&rft.pages=2710-2718&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/josaa.24.002710&rft_dat=%3Cpubmed_hal_p%3E17767240%3C/pubmed_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/17767240&rfr_iscdi=true