Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal
We show that by using a one-dimensional anisotropic photonic structure, it is possible to realize optical wave polarization conversion by reflection and transmission processes. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitte...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2007, Vol.24 (9), p.2710-2718 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2718 |
---|---|
container_issue | 9 |
container_start_page | 2710 |
container_title | Journal of the Optical Society of America. A, Optics, image science, and vision |
container_volume | 24 |
creator | OUCHANI, Noama BRIA, Driss DJAFARI-ROUHANI, Bahram NOUGAOUI, Abdelkarim |
description | We show that by using a one-dimensional anisotropic photonic structure, it is possible to realize optical wave polarization conversion by reflection and transmission processes. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitted P(S) polarized wave. This polarization conversion property can be fulfilled with a simple finite superlattice (SL) constituted of anisotropic dielectric materials. We discuss the appropriate choices of the material and geometrical properties to realize such structures. The transmission and reflection coefficients are calculated in the framework of the Green's function method. The amplitude and the polarization characteristics of reflected and transmitted waves are determined as functions of frequency, wave vector k(parallel) (parallel to the interface), and the orientations of the principal axes of the layers constituting the SL. Specific applications of these results are given for a SL consisting of alternating biaxial anisotropic layers NaNO(2)/SbSI sandwiched between two identical semi-infinite isotropic media. |
doi_str_mv | 10.1364/josaa.24.002710 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00283163v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17767240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-c8fe5e161c02698b5bbfdacf050aa8939061c1c9cca38243ea16d0fdd79bca93</originalsourceid><addsrcrecordid>eNpFkD1vwjAQhq2qVaG0c7cqS4cOAX8lsUdEP2iFxFD26OI4YBSSyDao9NfXKKhMd7r3eW94EHokeExYyifb1gGMKR9jTDOCr9CQJBTHImH0OuxY8DhLqBygO-e2GGOeiuwWDUiWpRnleIjWKwuNO2jrdKxrrbw1auIvtx2sG-2Nirq2Bmt-wZu2iVTbhNhrG-2dadYReY0q0xivo8LAj4E66jatb5vQU_boPNT36KaC2umH8xyh1fvbajaPF8uPz9l0ESsmuY-VqHSiSUoUpqkURVIUVQmqwgkGEJJJHCKipFLABOVMA0lLXJVlJgsFko3QS_92A3XeWbMDe8xbMPl8ushPt-BJMJKyAwnspGeVbZ2zuvovEJyf7OZfy-_pNKc87-2GxlPf6PbFTpcX_qwzAM9nAJyCugoelXEXThLCCRPsDwHzhXI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal</title><source>Optica Publishing Group Journals</source><creator>OUCHANI, Noama ; BRIA, Driss ; DJAFARI-ROUHANI, Bahram ; NOUGAOUI, Abdelkarim</creator><creatorcontrib>OUCHANI, Noama ; BRIA, Driss ; DJAFARI-ROUHANI, Bahram ; NOUGAOUI, Abdelkarim</creatorcontrib><description>We show that by using a one-dimensional anisotropic photonic structure, it is possible to realize optical wave polarization conversion by reflection and transmission processes. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitted P(S) polarized wave. This polarization conversion property can be fulfilled with a simple finite superlattice (SL) constituted of anisotropic dielectric materials. We discuss the appropriate choices of the material and geometrical properties to realize such structures. The transmission and reflection coefficients are calculated in the framework of the Green's function method. The amplitude and the polarization characteristics of reflected and transmitted waves are determined as functions of frequency, wave vector k(parallel) (parallel to the interface), and the orientations of the principal axes of the layers constituting the SL. Specific applications of these results are given for a SL consisting of alternating biaxial anisotropic layers NaNO(2)/SbSI sandwiched between two identical semi-infinite isotropic media.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/josaa.24.002710</identifier><identifier>PMID: 17767240</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>Engineering Sciences ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Optical materials ; Optics ; Photonic bandgap materials ; Physics</subject><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2007, Vol.24 (9), p.2710-2718</ispartof><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-c8fe5e161c02698b5bbfdacf050aa8939061c1c9cca38243ea16d0fdd79bca93</citedby><orcidid>0000-0001-6983-9689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3256,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19114138$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17767240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00283163$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>OUCHANI, Noama</creatorcontrib><creatorcontrib>BRIA, Driss</creatorcontrib><creatorcontrib>DJAFARI-ROUHANI, Bahram</creatorcontrib><creatorcontrib>NOUGAOUI, Abdelkarim</creatorcontrib><title>Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>We show that by using a one-dimensional anisotropic photonic structure, it is possible to realize optical wave polarization conversion by reflection and transmission processes. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitted P(S) polarized wave. This polarization conversion property can be fulfilled with a simple finite superlattice (SL) constituted of anisotropic dielectric materials. We discuss the appropriate choices of the material and geometrical properties to realize such structures. The transmission and reflection coefficients are calculated in the framework of the Green's function method. The amplitude and the polarization characteristics of reflected and transmitted waves are determined as functions of frequency, wave vector k(parallel) (parallel to the interface), and the orientations of the principal axes of the layers constituting the SL. Specific applications of these results are given for a SL consisting of alternating biaxial anisotropic layers NaNO(2)/SbSI sandwiched between two identical semi-infinite isotropic media.</description><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Optical materials</subject><subject>Optics</subject><subject>Photonic bandgap materials</subject><subject>Physics</subject><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkD1vwjAQhq2qVaG0c7cqS4cOAX8lsUdEP2iFxFD26OI4YBSSyDao9NfXKKhMd7r3eW94EHokeExYyifb1gGMKR9jTDOCr9CQJBTHImH0OuxY8DhLqBygO-e2GGOeiuwWDUiWpRnleIjWKwuNO2jrdKxrrbw1auIvtx2sG-2Nirq2Bmt-wZu2iVTbhNhrG-2dadYReY0q0xivo8LAj4E66jatb5vQU_boPNT36KaC2umH8xyh1fvbajaPF8uPz9l0ESsmuY-VqHSiSUoUpqkURVIUVQmqwgkGEJJJHCKipFLABOVMA0lLXJVlJgsFko3QS_92A3XeWbMDe8xbMPl8ushPt-BJMJKyAwnspGeVbZ2zuvovEJyf7OZfy-_pNKc87-2GxlPf6PbFTpcX_qwzAM9nAJyCugoelXEXThLCCRPsDwHzhXI</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>OUCHANI, Noama</creator><creator>BRIA, Driss</creator><creator>DJAFARI-ROUHANI, Bahram</creator><creator>NOUGAOUI, Abdelkarim</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6983-9689</orcidid></search><sort><creationdate>2007</creationdate><title>Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal</title><author>OUCHANI, Noama ; BRIA, Driss ; DJAFARI-ROUHANI, Bahram ; NOUGAOUI, Abdelkarim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-c8fe5e161c02698b5bbfdacf050aa8939061c1c9cca38243ea16d0fdd79bca93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Optical materials</topic><topic>Optics</topic><topic>Photonic bandgap materials</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OUCHANI, Noama</creatorcontrib><creatorcontrib>BRIA, Driss</creatorcontrib><creatorcontrib>DJAFARI-ROUHANI, Bahram</creatorcontrib><creatorcontrib>NOUGAOUI, Abdelkarim</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OUCHANI, Noama</au><au>BRIA, Driss</au><au>DJAFARI-ROUHANI, Bahram</au><au>NOUGAOUI, Abdelkarim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2007</date><risdate>2007</risdate><volume>24</volume><issue>9</issue><spage>2710</spage><epage>2718</epage><pages>2710-2718</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>We show that by using a one-dimensional anisotropic photonic structure, it is possible to realize optical wave polarization conversion by reflection and transmission processes. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitted P(S) polarized wave. This polarization conversion property can be fulfilled with a simple finite superlattice (SL) constituted of anisotropic dielectric materials. We discuss the appropriate choices of the material and geometrical properties to realize such structures. The transmission and reflection coefficients are calculated in the framework of the Green's function method. The amplitude and the polarization characteristics of reflected and transmitted waves are determined as functions of frequency, wave vector k(parallel) (parallel to the interface), and the orientations of the principal axes of the layers constituting the SL. Specific applications of these results are given for a SL consisting of alternating biaxial anisotropic layers NaNO(2)/SbSI sandwiched between two identical semi-infinite isotropic media.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>17767240</pmid><doi>10.1364/josaa.24.002710</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6983-9689</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-7529 |
ispartof | Journal of the Optical Society of America. A, Optics, image science, and vision, 2007, Vol.24 (9), p.2710-2718 |
issn | 1084-7529 1520-8532 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00283163v1 |
source | Optica Publishing Group Journals |
subjects | Engineering Sciences Exact sciences and technology Fundamental areas of phenomenology (including applications) Optical materials Optics Photonic bandgap materials Physics |
title | Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transverse-electric/transverse-magnetic%20polarization%20converter%20using%201D%20finite%20biaxial%20photonic%20crystal&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=OUCHANI,%20Noama&rft.date=2007&rft.volume=24&rft.issue=9&rft.spage=2710&rft.epage=2718&rft.pages=2710-2718&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/josaa.24.002710&rft_dat=%3Cpubmed_hal_p%3E17767240%3C/pubmed_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/17767240&rfr_iscdi=true |