A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence
A new subgrid eddy-viscosity model is proposed in this paper. Full details of the derivation of the model are given with the assumption of homogeneous turbulence. The formulation of the model is based on the dynamic equation of the structure function of resolved scale turbulence. By means of the loc...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2007-07, Vol.582, p.377-397 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 397 |
---|---|
container_issue | |
container_start_page | 377 |
container_title | Journal of fluid mechanics |
container_volume | 582 |
creator | CUI, G. X. XU, C. X. FANG, L. SHAO, L. ZHANG, Z. S. |
description | A new subgrid eddy-viscosity model is proposed in this paper. Full details of the derivation of the model are given with the assumption of homogeneous turbulence. The formulation of the model is based on the dynamic equation of the structure function of resolved scale turbulence. By means of the local volume average, the effect of the anisotropy is taken into account in the generalized Kolmogorov equation, which represents the equilibrium energy transfer in the inertial subrange. Since the proposed model is formulated directly from the filtered Navier–Stokes equation, the resulting subgrid eddy viscosity has the feature that it can be adopted in various turbulent flows without any adjustments of model coefficient. The proposed model predicts the major statistical properties of rotating turbulence perfectly at fairly low-turbulence Rossby numbers whereas subgrid models, which do not consider anisotropic effects in turbulence energy transfer, cannot predict this typical anisotropic turbulence correctly. The model is also tested in plane wall turbulence, i.e. plane Couette flow and channel flow, and the major statistical properties are in better agreement with those predicted by DNS results than the predictions by the Smagorinsky, the dynamic Smagorinsky and the recent Cui–Zhou–Zhang–Shao models. |
doi_str_mv | 10.1017/S002211200700599X |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00272158v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S002211200700599X</cupid><sourcerecordid>29977721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-958dc2eaa7da58df6b29b02fa20aa425190154f6c5722240d88083ef7b277c003</originalsourceid><addsrcrecordid>eNp1kV-L1DAUxYu44LjrB_AtCAo-VG_Spkkeh6K7wojrv2Xfwm2ajlnbZkza1fn2psywC8o-JeT87s05nCx7TuENBSrefgVgjFIGIAC4UtePshUtK5WLquSPs9Ui54v-JHsa4w0ALUCJVXa1JqP9TeLcbINriW3bfX7rovHRTXsy-Nb2pPOB9Bi2Nl9kEt0w9zg5PxLfERxd9FPwO2fINIdm7u1o7Fl20mEf7bPjeZp9f__uW32Rbz6df6jXm9yUik254rI1zCKKFtO1qxqmGmAdMkAsGacKKC-7ynDBGCuhlRJkYTvRMCEMQHGavT7s_YG93gU3YNhrj05frDd6eUu5BaNc3tLEvjqwu-B_zTZOekhBbd_jaP0cNVNKiAQn8MU_4I2fw5hyaEZBSlXxMkH0AJngYwy2u_uegl4q0f9VkmZeHhdjNNh3AUfj4v2glKkUuaTKD5yLk_1zp2P4qStRCK6r88-6vuJfri8_1rpOfHH0gkOTatzae8cPu_kLV6WoXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210889654</pqid></control><display><type>article</type><title>A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence</title><source>Cambridge University Press Journals Complete</source><creator>CUI, G. X. ; XU, C. X. ; FANG, L. ; SHAO, L. ; ZHANG, Z. S.</creator><creatorcontrib>CUI, G. X. ; XU, C. X. ; FANG, L. ; SHAO, L. ; ZHANG, Z. S.</creatorcontrib><description>A new subgrid eddy-viscosity model is proposed in this paper. Full details of the derivation of the model are given with the assumption of homogeneous turbulence. The formulation of the model is based on the dynamic equation of the structure function of resolved scale turbulence. By means of the local volume average, the effect of the anisotropy is taken into account in the generalized Kolmogorov equation, which represents the equilibrium energy transfer in the inertial subrange. Since the proposed model is formulated directly from the filtered Navier–Stokes equation, the resulting subgrid eddy viscosity has the feature that it can be adopted in various turbulent flows without any adjustments of model coefficient. The proposed model predicts the major statistical properties of rotating turbulence perfectly at fairly low-turbulence Rossby numbers whereas subgrid models, which do not consider anisotropic effects in turbulence energy transfer, cannot predict this typical anisotropic turbulence correctly. The model is also tested in plane wall turbulence, i.e. plane Couette flow and channel flow, and the major statistical properties are in better agreement with those predicted by DNS results than the predictions by the Smagorinsky, the dynamic Smagorinsky and the recent Cui–Zhou–Zhang–Shao models.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S002211200700599X</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Anisotropy ; Channel flow ; Energy transfer ; Engineering Sciences ; Exact sciences and technology ; Fluid dynamics ; Fluid mechanics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; Isotropic turbulence; homogeneous turbulence ; Mechanical engineering ; Mechanics ; Physics ; Turbulence ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2007-07, Vol.582, p.377-397</ispartof><rights>Copyright © Cambridge University Press 2007</rights><rights>2007 INIST-CNRS</rights><rights>Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-958dc2eaa7da58df6b29b02fa20aa425190154f6c5722240d88083ef7b277c003</citedby><cites>FETCH-LOGICAL-c492t-958dc2eaa7da58df6b29b02fa20aa425190154f6c5722240d88083ef7b277c003</cites><orcidid>0000-0002-1241-2032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211200700599X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,885,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18830980$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00272158$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>CUI, G. X.</creatorcontrib><creatorcontrib>XU, C. X.</creatorcontrib><creatorcontrib>FANG, L.</creatorcontrib><creatorcontrib>SHAO, L.</creatorcontrib><creatorcontrib>ZHANG, Z. S.</creatorcontrib><title>A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A new subgrid eddy-viscosity model is proposed in this paper. Full details of the derivation of the model are given with the assumption of homogeneous turbulence. The formulation of the model is based on the dynamic equation of the structure function of resolved scale turbulence. By means of the local volume average, the effect of the anisotropy is taken into account in the generalized Kolmogorov equation, which represents the equilibrium energy transfer in the inertial subrange. Since the proposed model is formulated directly from the filtered Navier–Stokes equation, the resulting subgrid eddy viscosity has the feature that it can be adopted in various turbulent flows without any adjustments of model coefficient. The proposed model predicts the major statistical properties of rotating turbulence perfectly at fairly low-turbulence Rossby numbers whereas subgrid models, which do not consider anisotropic effects in turbulence energy transfer, cannot predict this typical anisotropic turbulence correctly. The model is also tested in plane wall turbulence, i.e. plane Couette flow and channel flow, and the major statistical properties are in better agreement with those predicted by DNS results than the predictions by the Smagorinsky, the dynamic Smagorinsky and the recent Cui–Zhou–Zhang–Shao models.</description><subject>Anisotropy</subject><subject>Channel flow</subject><subject>Energy transfer</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Isotropic turbulence; homogeneous turbulence</subject><subject>Mechanical engineering</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Turbulence</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kV-L1DAUxYu44LjrB_AtCAo-VG_Spkkeh6K7wojrv2Xfwm2ajlnbZkza1fn2psywC8o-JeT87s05nCx7TuENBSrefgVgjFIGIAC4UtePshUtK5WLquSPs9Ui54v-JHsa4w0ALUCJVXa1JqP9TeLcbINriW3bfX7rovHRTXsy-Nb2pPOB9Bi2Nl9kEt0w9zg5PxLfERxd9FPwO2fINIdm7u1o7Fl20mEf7bPjeZp9f__uW32Rbz6df6jXm9yUik254rI1zCKKFtO1qxqmGmAdMkAsGacKKC-7ynDBGCuhlRJkYTvRMCEMQHGavT7s_YG93gU3YNhrj05frDd6eUu5BaNc3tLEvjqwu-B_zTZOekhBbd_jaP0cNVNKiAQn8MU_4I2fw5hyaEZBSlXxMkH0AJngYwy2u_uegl4q0f9VkmZeHhdjNNh3AUfj4v2glKkUuaTKD5yLk_1zp2P4qStRCK6r88-6vuJfri8_1rpOfHH0gkOTatzae8cPu_kLV6WoXQ</recordid><startdate>20070710</startdate><enddate>20070710</enddate><creator>CUI, G. X.</creator><creator>XU, C. X.</creator><creator>FANG, L.</creator><creator>SHAO, L.</creator><creator>ZHANG, Z. S.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1241-2032</orcidid></search><sort><creationdate>20070710</creationdate><title>A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence</title><author>CUI, G. X. ; XU, C. X. ; FANG, L. ; SHAO, L. ; ZHANG, Z. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-958dc2eaa7da58df6b29b02fa20aa425190154f6c5722240d88083ef7b277c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Anisotropy</topic><topic>Channel flow</topic><topic>Energy transfer</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Isotropic turbulence; homogeneous turbulence</topic><topic>Mechanical engineering</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Turbulence</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CUI, G. X.</creatorcontrib><creatorcontrib>XU, C. X.</creatorcontrib><creatorcontrib>FANG, L.</creatorcontrib><creatorcontrib>SHAO, L.</creatorcontrib><creatorcontrib>ZHANG, Z. S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CUI, G. X.</au><au>XU, C. X.</au><au>FANG, L.</au><au>SHAO, L.</au><au>ZHANG, Z. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2007-07-10</date><risdate>2007</risdate><volume>582</volume><spage>377</spage><epage>397</epage><pages>377-397</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>A new subgrid eddy-viscosity model is proposed in this paper. Full details of the derivation of the model are given with the assumption of homogeneous turbulence. The formulation of the model is based on the dynamic equation of the structure function of resolved scale turbulence. By means of the local volume average, the effect of the anisotropy is taken into account in the generalized Kolmogorov equation, which represents the equilibrium energy transfer in the inertial subrange. Since the proposed model is formulated directly from the filtered Navier–Stokes equation, the resulting subgrid eddy viscosity has the feature that it can be adopted in various turbulent flows without any adjustments of model coefficient. The proposed model predicts the major statistical properties of rotating turbulence perfectly at fairly low-turbulence Rossby numbers whereas subgrid models, which do not consider anisotropic effects in turbulence energy transfer, cannot predict this typical anisotropic turbulence correctly. The model is also tested in plane wall turbulence, i.e. plane Couette flow and channel flow, and the major statistical properties are in better agreement with those predicted by DNS results than the predictions by the Smagorinsky, the dynamic Smagorinsky and the recent Cui–Zhou–Zhang–Shao models.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S002211200700599X</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1241-2032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2007-07, Vol.582, p.377-397 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00272158v1 |
source | Cambridge University Press Journals Complete |
subjects | Anisotropy Channel flow Energy transfer Engineering Sciences Exact sciences and technology Fluid dynamics Fluid mechanics Fluids mechanics Fundamental areas of phenomenology (including applications) Isotropic turbulence homogeneous turbulence Mechanical engineering Mechanics Physics Turbulence Turbulence simulation and modeling Turbulent flows, convection, and heat transfer Viscosity |
title | A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A24%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20subgrid%20eddy-viscosity%20model%20for%20large-eddy%20simulation%20of%20anisotropic%20turbulence&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=CUI,%20G.%20X.&rft.date=2007-07-10&rft.volume=582&rft.spage=377&rft.epage=397&rft.pages=377-397&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S002211200700599X&rft_dat=%3Cproquest_hal_p%3E29977721%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210889654&rft_id=info:pmid/&rft_cupid=10_1017_S002211200700599X&rfr_iscdi=true |